Chapter 9 - Recurrent Events

Slides

Lecture slides here. (To convert html to pdf, press E \(\to\) Print \(\to\) Destination: Save to pdf)

Chapter Summary

When a subject (or system) can experience recurrent events (e.g., repeated hospitalizations, infections, or mechanical failures), standard univariate approaches (like focusing only on the first event) can be inefficient and miss valuable information. Instead, we can model these repeated occurrences via extended Cox-type methods.

Intensity vs. rate functions

  • Intensity function \(\ell\{t \mid \overline{N}^*(t-)\}\): The instantaneous incidence of a new event at time \(t\) conditional on the entire past. Generalizes the hazard function from univariate survival.
  • Rate function \(r(t)\): The marginal incidence rate across the population. Bypasses specifying how past events affect current risk but does not fully specify the likelihood. Often paired with robust variance methods.

Poisson processes are the simplest example (memoryless arrivals), but in practice, recurrent events often cluster, so more realistic models are needed.

Multiplicative intensity/rate models

Andersen–Gill model

A direct extension of the Cox model that posits: \[ \ell\{t \mid \overline{N}^*(t-), \overline{Z}(t)\} \;=\; \exp\bigl\{\beta^\mathsf{T}Z(t)\bigr\}\,\mathrm{d}\mu_0(t). \]

  • Interpretation: The conditional risk of a new event depends only on the current covariates \(Z(t)\), not the event history (unless included in \(Z(t)\)).
  • Estimation: Uses partial-likelihood scores analogous to Cox, with counting-process style risk sets.
  • Limitation: If only baseline covariates are included, ignoring event history can be unrealistic; including post-baseline events or other time-varying covariates can confound inference about baseline effects.

Multiplicative intensity frailty models

Incorporate a random effect (frailty) \(\xi\) to induce within-subject dependence: \[ \ell\{t \mid \xi, \overline{N}^*(t-), \overline{Z}(t)\} \;=\; \xi \,\exp\bigl\{\beta^\mathsf{T} Z(t)\bigr\}\,\mathrm{d}\mu_0(t). \]

  • Example: Gamma frailty, letting \(\xi\) follow a Gamma distribution with mean 1, variance \(1/\gamma\).
  • Interpretation: Covariate effects are subject-specific; \(\beta\) reflects hazard ratios within each random-effect stratum.
  • Estimation: Typically via EM algorithm.

Proportional rates/means (LWYY) model

Targets the marginal rate: \[ r\{t \mid \overline{Z}(t)\} \;=\; \exp\bigl\{\beta^\mathsf{T} Z(t)\bigr\}\,\mathrm{d}\mu_0(t). \]

  • Estimation: Identical point estimates as Andersen–Gill, but with robust (sandwich) standard errors to account for unmodeled within-subject correlation.
  • Interpretation: \(\beta\) is the population-level effect on the rate (or mean) of recurrent events, simpler to interpret when focusing on an overall treatment effect.

Multivariate approaches to total or gap times

Rather than modeling the entire counting process \(N^*(t)\) directly, one can treat the times \(T_1< T_2< \cdots\) (or gap times \(U_k=T_k - T_{k-1}\)) as a multivariate survival problem:

  • WLW model: Marginal hazard for each event order (1st, 2nd, etc.), ignoring the conditioning on previous events.
  • PWP-TT: Condition on having experienced the \((k-1)\)th event, analyzing total times but only for those who reached event \(k-1\).
  • PWP-GT: Condition similarly, but use gap times from one event to the next, resetting the time clock after each event.

Differing risk-set definitions imply differences in interpretation for later events. WLW models the overall population-level hazard for the \(k\)th event, while PWP approaches focus on conditional hazards for those who already had \((k-1)\) events.

Example R code

Below are code snippets using R’s survival::coxph() to demonstrate fitting the three main classes of Cox-type recurrent event models. Suppose our data frame df is in a “counting process” format with columns:

  • start, stop: time interval boundaries for each event segment,
  • status: event indicator (1 if the event occurred in that interval, 0 if censored),
  • id: subject identifier,
  • additional covariates (e.g., x1, x2).
library(survival)
########################
# 1. Andersen–Gill model
########################
# Assumes any correlation among events is captured
# entirely by the covariates in the model.
fit_AG <- coxph(
  Surv(start, stop, status) ~ x1 + x2, 
  data = df
)

####################################
# 2. Frailty model (Gamma frailty)
####################################
# Introduces a subject-specific random effect
fit_frail <- coxph(
  Surv(start, stop, status) ~ x1 + x2
    + frailty(id, distribution = "gamma"),
  data = df
)

############################################
# 3. Proportional rates/means (LWYY model)
############################################
# Uses robust variance to account for correlation;
# point estimates match Andersen–Gill, but standard errors differ.
fit_LWYY <- coxph(
  Surv(start, stop, status) ~ x1 + x2
    + cluster(id),
  data = df
)

For multivariate approaches, we need to preprocess the data to include event order or gap times:

  • order: event order (1st, 2nd, etc.),
  • gtime: gap time from the previous event.
##################################
# WLW model
##################################
# 'stop' is the time to the kth event (or censor),
# ignoring whether the (k-1)th event occurred.
fit_wlw <- coxph(
  Surv(stop, status) ~ x1 + x2 * strata(order)
    + cluster(id),
  data = df
)

##################################
# PWP-TT model
##################################
# 'start' is the time of (k-1)th event; 'stop' is kth event time.
fit_pwp_tt <- coxph(
  Surv(start, stop, status) ~ x1 + x2 * strata(order)
    + cluster(id),
  data = df
)

##################################
# PWP-GT model
##################################
# 'gtime' is the gap time from (k-1)th event to kth event.
# Otherwise similar to WLW in usage.
fit_pwp_gt <- coxph(
  Surv(gtime, status) ~ x1 + x2 * strata(order)
    + cluster(id),
  data = df
)

Conclusion

Recurrent event data demand methods that move beyond standard univariate survival analysis:

  • Andersen–Gill and frailty models specify conditional intensities, capturing event dependence through time-varying covariates or latent frailties.
  • Proportional rates/means approaches target marginal rates, using robust variances to adjust for within-subject correlations.
  • Multivariate total/gap-time approaches view each recurrence as a separate component, applying extensions of the Cox model (WLW, PWP-TT, PWP-GT), each with different conditioning and interpretational nuances.

The choice among these frameworks depends on scientific aims (e.g., dynamic prediction vs. inference on treatment effect at baseline) and how one wishes to handle correlations induced by repeated occurrences. All, however, build on the Cox model’s core multiplicative form, ensuring familiar regression interpretations and flexible software implementations.

R Code

Show the code
###############################################################################
# Chapter 9 R Code
#
# This script reproduces all major numerical results in Chapter 9, including:
#   1. Andersen-Gill Model for recurrent events (Chronic Granulomatous Disease)
#   2. Frailty model vs. Proportional Means model (Chronic Granulomatous Disease)
#   3. Multivariate approaches (WLW, PWP models)
#   4. Poisson, Negative Binomial, and Zero-Inflated Poisson regressions
###############################################################################

library(survival)
library(tidyverse)
library(gtsummary)
library(knitr)
library(patchwork)

#==============================================================================
# (A) Andersen-Gill/Frailty/LWYY Model for Recurrent Infections (CGD Data)
#==============================================================================
#------------------------------------------------------------------------------
# 1. Read the Chronic Granulomatous Disease (CGD) Data
#    in Counting Process Format
#------------------------------------------------------------------------------
cgd <- read.table("Data\\Chronic Granulomatous Disease Study\\cgd_counting.txt")
head(cgd)

#------------------------------------------------------------------------------
# 2. Andersen-Gill Model
#------------------------------------------------------------------------------
obj_AG <- coxph(
  Surv(tstart, tstop, status) ~ treat + sex + age + inherit + steroids + propylac,
  data = cgd
)

summary(obj_AG)

# Residuals
cox.zph(obj_AG)
residuals(obj_AG, type = "martingale", collapse = cgd$id)

#------------------------------------------------------------------------------
# 3. Frailty Model
#------------------------------------------------------------------------------
obj_frail <- coxph(
  Surv(tstart, tstop, status) ~ treat + sex + age + inherit + steroids + propylac +
    frailty(id, distribution = "gamma"),
  data = cgd
)
summary(obj_frail)

#------------------------------------------------------------------------------
# 4. Proportional Means Model (LWYY)
#------------------------------------------------------------------------------
obj_pm <- coxph(
  Surv(tstart, tstop, status) ~ treat + sex + age + inherit + steroids + propylac +
    cluster(id),
  data = cgd
)
summary(obj_pm)

#------------------------------------------------------------------------------
# 5. Extract Coefficients for Table 9.2
#------------------------------------------------------------------------------
coeff_AG    <- summary(obj_AG)$coeff
coeff_frail <- summary(obj_frail)$coeff
coeff_pm    <- summary(obj_pm)$coeff

# Andersen-Gill
c1 <- coeff_AG[, 1]  # beta
c2 <- coeff_AG[, 3]  # se(beta)
c3 <- coeff_AG[, 5]  # p-value

# Frailty
c4 <- coeff_frail[1:6, 1] # beta
c5 <- coeff_frail[1:6, 2] # se(beta)
c6 <- coeff_frail[1:6, 6] # p-value

# Proportional Means
c7 <- coeff_pm[1:6, 1]    # beta
c8 <- coeff_pm[1:6, 4]    # se(beta)
c9 <- coeff_pm[1:6, 6]    # p-value

# Print Table 9.1 (beta, se, p-values)
noquote(round(cbind(c1, c2, c3, c4, c5, c6, c7, c8, c9), 3))


#==============================================================================
# (B) Figure 9.4: Predicted Mean Functions by Treatment
#==============================================================================
# Predicted mean number of infections using Proportional Means model
#------------------------------------------------------------------------------

# 1. Extract Beta and Baseline Mean Function
beta <- obj_pm$coefficients
Lt   <- basehaz(obj_pm, centered = FALSE)
t    <- Lt$time
mu0  <- Lt$hazard  # baseline mean function mu0(t)

# 2. Covariate Profiles
# For "female" patient: (sex=0, age=12, inherit=X-linked=1, steroids=1, propylac=1)
# Actually from the code: sex=1 means female, so we can check carefully:
# code snippet suggests c(0, 12, 1, 1, 1) are the covariates besides treatment, 
# so treat=0 or 1 is appended in front.
zf <- c(0, 12, 1, 1, 1)

# For "male" patient: (sex=1, age=12, etc.)
zm <- c(1, 12, 1, 1, 1)

# 3. Construct Mean Functions
# female: treat=1 or treat=0
mu.f.trt   <- exp(sum(c(1, zf) * beta)) * mu0
mu.f.contr <- exp(sum(c(0, zf) * beta)) * mu0

# male: treat=1 or treat=0
mu.m.trt   <- exp(sum(c(1, zm) * beta)) * mu0
mu.m.contr <- exp(sum(c(0, zm) * beta)) * mu0

# 4. Plot
par(mfrow = c(1, 2))

# Female
plot(
  t / 30.5, mu.f.trt,
  type  = "s",
  xlim  = c(0, 12),
  ylim  = c(0, 6),
  frame.plot = FALSE,
  lty   = 1,
  main  = "Female",
  xlab  = "Time (months)",
  ylab  = "Mean number of infections",
  lwd   = 2
)
lines(t / 30.5, mu.f.contr, lty = 3, lwd = 2)

# Male
plot(
  t / 30.5, mu.m.trt,
  type  = "s",
  xlim  = c(0, 12),
  ylim  = c(0, 6),
  frame.plot = FALSE,
  lty   = 1,
  main  = "Male",
  xlab  = "Time (months)",
  ylab  = "Mean number of infections",
  lwd   = 2
)
lines(t / 30.5, mu.m.contr, lty = 3, lwd = 2)


#==============================================================================
# (C) Multivariate Approaches (WLW, PWP Models)
#==============================================================================
cgd_mul <- cgd %>%
  arrange(id, tstart) %>%
  group_by(id) %>%
  mutate(
    order = row_number(),
    gtime = tstop - tstart,
    .after = tstop
  ) %>%
  ungroup()


#------------------------------------------------------------------------------
# 1. WLW Model
#------------------------------------------------------------------------------
wlw_obj <- coxph(
  Surv(tstop, status) ~ (treat + sex + age) * strata(order),
  data = cgd_mul %>% filter(order <= 3)
)

wlw_obj0 <- coxph(
  Surv(tstop, status) ~ (treat + sex + age) + strata(order),
  data = cgd_mul
)

#------------------------------------------------------------------------------
# 2. PWP-TT Model
#   (Time since trial entry)
#------------------------------------------------------------------------------
pwp_tt_obj <- coxph(
  Surv(tstart, tstop, status) ~ (treat + sex + age) * strata(order),
  data = cgd_mul %>% filter(order <= 3)
)

pwp_tt_obj0 <- coxph(
  Surv(tstart, tstop, status) ~ (treat + sex + age) + strata(order),
  data = cgd_mul
)

#------------------------------------------------------------------------------
# 3. PWP-GT Model
#   (Gap time between events)
#------------------------------------------------------------------------------
pwp_gt_obj <- coxph(
  Surv(gtime, status) ~ (treat + sex + age) * strata(order),
  data = cgd_mul %>% filter(order <= 3)
)

pwp_gt_obj0 <- coxph(
  Surv(gtime, status) ~ (treat + sex + age) + strata(order),
  data = cgd_mul
)

#------------------------------------------------------------------------------
# 4. Tabulate Treatment Effect HR (95% CI) & p-values
#------------------------------------------------------------------------------
trt_hr_mul <- function(obj, obj0, p, K, r = 2) {
  # p = # of covariates (including treatment)
  # K = # of strata (or repeated events)
  
  beta <- obj$coefficients
  var  <- obj$var
  
  beta_trt <- numeric(p + 1)
  var_trt  <- numeric(p + 1)
  
  # event #1
  beta_trt[1] <- beta[1]
  var_trt[1]  <- var[1, 1]
  
  # subsequent events
  for (j in 2:K) {
    beta_trt[j] <- beta[1] + beta[p + j - 1]
    var_trt[j]  <- var[1, 1] +
                   var[p + j - 1, p + j - 1] +
                   2 * var[1, p + j - 1]
  }
  
  # Overall
  beta_trt[p + 1] <- obj0$coefficients[1]
  var_trt[p + 1]  <- obj0$var[1, 1]
  
  se_trt <- sqrt(var_trt)
  za     <- qnorm(0.975)
  
  tibble(
    HR = str_c(
      round(exp(beta_trt), r), " (",
      round(exp(beta_trt - za * se_trt), r), ", ",
      round(exp(beta_trt + za * se_trt), r), ")"
    ),
    P  = round(1 - pchisq((beta_trt / se_trt)^2, df = 1), 3)
  )
}

# Example usage:
# For demonstration, we pick the WLW objects:
# trt_hr_mul(wlw_obj, wlw_obj0, p = 3, K = 3)

# Collect relevant data
N <- cgd_mul %>%
  filter(order == 1) %>%
  count(treat) %>%
  pull(n)

row_header <- cgd_mul %>%
  filter(status == 1) %>%
  count(treat, order) %>%
  filter(order <= 3) %>%
  pivot_wider(values_from = n, names_from = treat) %>%
  mutate(order = as.character(order)) %>%
  add_row(
    order   = "All",
    placebo = cgd_mul %>% filter(treat == "placebo", status == 1) %>% count() %>% pull(),
    `rIFN-g`= cgd_mul %>% filter(treat == "rIFN-g", status == 1) %>% count() %>% pull()
  ) %>%
  mutate(
    placebo = str_c(placebo, " (", round(100 * placebo / N[1], 1), "%)"),
    `rIFN-g`= str_c(`rIFN-g`, " (", round(100 * `rIFN-g` / N[2], 1), "%)")
  ) %>%
  select(order, `rIFN-g`, placebo)

# Build table for WLW, PWP-TT, PWP-GT
wlw_HR    <- trt_hr_mul(wlw_obj,    wlw_obj0,    3, 3)$HR
pwpTT_HR  <- trt_hr_mul(pwp_tt_obj, pwp_tt_obj0, 3, 3)$HR
pwpGT_HR  <- trt_hr_mul(pwp_gt_obj, pwp_gt_obj0, 3, 3)$HR

# Create table
cgd_tab <- row_header %>%
  add_column(
    WLW      = wlw_HR,
    `PWP-TT` = pwpTT_HR,
    `PWP-GT` = pwpGT_HR
  )

# Print table
cgd_tab 
# Example to create a LaTeX table:
# cgd_tab %>%
#   kable("latex")

#------------------------------------------------------------------------------
# 5. Forest Plot of Treatment Hazard Ratios
#------------------------------------------------------------------------------
hr_ci_parse <- function(x) {
  separate_wider_regex(
    x,
    patterns = c(x = ".+", " \\(", xmin = ".+", ", ", xmax = ".+", "\\)")
  )
}

cgd_models <- cgd_tab %>%
  separate_wider_regex(
    WLW:`PWP-GT`,
    patterns  = c(x = ".+", " \\(", xmin = ".+", ", ", xmax = ".+", "\\)"),
    names_sep = "_"
  ) %>%
  mutate(across(!c(order:placebo), as.numeric)) %>%
  pivot_longer(
    !c(order:placebo),
    names_to  = c("Model", ".value"),
    names_sep = "_"
  )

cgd_models %>%
  ggplot(aes(x = x, y = order)) +
  geom_point(aes(size = (order == "All"))) +
  geom_linerange(aes(xmin = xmin, xmax = xmax, linewidth = (order == "All"))) +
  geom_vline(xintercept = 1, linetype = 2) +
  facet_wrap(~ fct(Model), ncol = 3) +
  scale_y_discrete(
    "Infection",
    limits = rev(c("1", "2", "3", "All")),
    labels = rev(c("1st", "2nd", "3rd", "All"))
  ) +
  scale_x_log10("Treatment hazard ratio (95% CI)") +
  scale_size_manual(values = c(1.5, 2)) +
  scale_linewidth_manual(values = c(0.5, 0.8)) +
  theme_minimal() +
  theme(
    axis.text        = element_text(size = 10),
    axis.title       = element_text(size = 11),
    panel.grid       = element_blank(),
    strip.text       = element_text(size = 11),
    legend.position  = "none"
  )

# ggsave("rec_cgd_forest.pdf", width = 8, height = 4.5)
# ggsave("rec_cgd_forest.eps", width = 8, height = 4.5)


#==============================================================================
# (D) Poisson / Negative Binomial / Zero-Inflated Poisson Regressions
#==============================================================================
library(MASS)
library(pscl)

#------------------------------------------------------------------------------
# 1. Flatten Data for One-Row-per-Subject
#------------------------------------------------------------------------------
df_events <- cgd %>%
  group_by(id) %>%
  mutate(
    count      = sum(status),   # total # events for subject
    follow_up  = max(tstop)     # maximum 'tstop' is censoring time
  ) %>%
  distinct(id, .keep_all = TRUE)

#------------------------------------------------------------------------------
# 2. Poisson Regression
#------------------------------------------------------------------------------
ps_obj <- glm(
  count ~ treat + age + sex + offset(log(follow_up)),
  family = poisson(link = "log"),
  data = df_events
)
summary(ps_obj)

#------------------------------------------------------------------------------
# 3. Negative Binomial Regression
#------------------------------------------------------------------------------
nb_obj <- MASS::glm.nb(
  count ~ treat + age + sex + offset(log(follow_up)),
  data = df_events
)
summary(nb_obj)

#------------------------------------------------------------------------------
# 4. Zero-Inflated Poisson (ZIP) Regression
#------------------------------------------------------------------------------
zip_model <- zeroinfl(
  count ~ treat + age + sex + offset(log(follow_up))  # Poisson part
    | treat + age + sex,                              # Logistic part
  data = df_events
)
summary(zip_model)

zip_model$coefficients
zip_model$vcov