Chapter 9 - Recurrent Events
Department of Biostatistics & Medical Informatics
University of Wisconsin-Madison
Intensity and rate/mean functions
Cox-type models for recurrent events
Analysis of the Chronic Granulomatous Disease Study
Multivariate approaches to recurrent events
\[\newcommand{\d}{{\rm d}}\] \[\newcommand{\T}{{\rm T}}\] \[\newcommand{\dd}{{\rm d}}\] \[\newcommand{\pr}{{\rm pr}}\] \[\newcommand{\var}{{\rm var}}\] \[\newcommand{\se}{{\rm se}}\] \[\newcommand{\indep}{\perp \!\!\! \perp}\] \[\newcommand{\Pn}{n^{-1}\sum_{i=1}^n}\]
Repeated occurrences of an adverse event
Naive approach: time to first event
Recurrent event process
Rate: Marginal incidence \[\begin{equation}\label{eq:rec:rate} r(t)\dd t=E\{\dd N^*(t)\} \end{equation}\]
Mean: Average number of events \[\begin{equation}\label{eq:rec:mean} \mu(t)=E\{N^*(t)\}=\int_0^t r(u)\dd u \end{equation}\]
Rate vs intensity \[ r(t)=E\left[\ell\{t\mid \overline{N}^*(t-)\}\right] \]
survival::coxph()
(I)(start, stop)
: time period between previous and current eventsid
as correlation presumably captured by covariatessurvival::coxph()
(II)id
for frailtyid
for empirical evaluation of clusteringse2
in results for robust standard errortreat
; rIFN-g vs placebo)sex
)age
; years)inherit
; autosomal recessive or X-linked)steroids
; Yes/No)propylac
; Yes/No)# Andersen-Gill model
obj.AG <- coxph(Surv(tstart, tstop, status) ~ treat + sex + age +
inherit + steroids + propylac, data = cgd)
# Frailty model
obj.frail <- coxph(Surv(tstart, tstop, status) ~ treat + sex + age +
inherit + steroids + propylac +
frailty(id, distribution = "gamma"), data = cgd)
# proportional mean model (LWYY) - recommended
obj.pm <- coxph(Surv(tstart, tstop, status) ~ treat + sex + age +
inherit + steroids + propylac + cluster(id), data = cgd)
summary(obj.pm)
# coef exp(coef) se(coef) robust se z Pr(>|z|)
# treatrIFN-g -1.05140 0.34945 0.26500 0.31031 -3.388 0.000703 ***
# sexmale 0.72832 2.07159 0.39044 0.43676 1.668 0.095405 .
# ...
coxph(Surv(start, stop, status) ~ covariates)
coxph(Surv(start, stop, status) ~ covariates + frailty(id, distribution = "gamma"))
coxph(Surv(start, stop, status) ~ covariates + cluster(id)
coxph()
for multiple failure times