Chapter 10 - Competing/Semi-Competing Risks
Department of Biostatistics & Medical Informatics
University of Wisconsin-Madison
Cause-specific hazard and cumulative incidence
Non- and semi-parametric methods
Analysis of bone marrow transplantation study
Semi-competing risks and examples
\[\newcommand{\d}{{\rm d}}\] \[\newcommand{\T}{{\rm T}}\] \[\newcommand{\dd}{{\rm d}}\] \[\newcommand{\cc}{{\rm c}}\] \[\newcommand{\pr}{{\rm pr}}\] \[\newcommand{\var}{{\rm var}}\] \[\newcommand{\se}{{\rm se}}\] \[\newcommand{\indep}{\perp \!\!\! \perp}\] \[\newcommand{\Pn}{n^{-1}\sum_{i=1}^n}\]
survival::coxph()
Recall relationship \[\begin{equation*} \dd F_k(t)=S(t-)\dd\Lambda_k^\cc(t) \end{equation*}\]
\(S(t-)=\pr(T\geq t)\): By KM estimator \(\hat S(t-)\) for overall failure
\(\dd\Lambda_k^\cc(t)\): By Nelsen-Aalen estimator (non-\(k\) risks as censoring) \[ \dd\hat\Lambda_k^\cc(t)=\frac{\sum_{i=1}^n\dd N_{ki}(t)}{\sum_{i=1}^n I(X_i\geq t)} \]
Gray estimator \[\hat F_k(t)=\int_0^t \hat S(u-)\dd\hat \Lambda_k^\cc(u)\]
cmprk::cuminc()
(ftime, fstatus)
: \((X, \delta)\)group
: group variable (optional); strata
: strata variable (optional)rho
: \(\rho\) in weight \(W(t)=\hat S(t-)^\rho\) (HF \(G^\rho\) family)obj$Tests
: tests results on each riskobj$"a k"
: CIF estimates for \(k\)th risk in group \(a\)
time
: \(t\); est
: \(\hat F_k(t)\); var
: \(\hat\var\{\hat F_k(t)\}\)cmprk::crr()
(I)(ftime, fstatus)
: \((X, \delta)\); cov1
: \(Z\)failcode = k
: models \(k\)th riskcrr
obj$coef
: \(\hat\beta_k\); obj$var
: \(\hat\var(\hat\beta_k)\)obj$uftime
: \(t\); obj$bfitj
: \(\dd\hat\Lambda_{k0}(t)\)cmprk::crr()
(II)obj
: a crr
object for fit modelz
: new covariate data#change k
k <- 1
#--- proportional cause-specific hazards -----------------------------
obj.cs <- coxph(Surv(time, status == k) ~ cohort + donor + hist + wait,
data = cibmtr)
#--- Fine and Gray --------------------------------------------------
obj.fg <- crr(cibmtr$time, cibmtr$status, cibmtr[, 3:6], failcode = k)
Fine, J. P., Jiang, H., & Chappell, R. (2001). On semi-competing risks data. Biometrika, 88(4), 907-919.
coxph(Surv(time, status == k) ~ covariates)
cmprk::cuminc(ftime, fstatus, group, strata, rho = 0)
cmprk::crr(ftime, fstatus, cov1, failcode = k)
mets
, reReg
, etc.)