References
Akacha, M., Binkowitz, B., Bretz, F., Fritsch, A., Hougaard, P.,
Jahn-Eimermacher, A., & al., et. (2018). Request for CHMP
qualification opinion: Clinically interpretable treatment effect
measures based on recurrent event endpoints that allow for efficient
statistical analyses. http://www.ema.europa.eu/documents/other/qualification-opinion-treatment-effect-measures-when-using-recurrent-event-endpoints-applicants_en.pdf.
Akacha, M., Bretz, F., Ohlssen, D., Rosenkranz, G., & Schmidli, H.
(2017). Estimands and Their Role in Clinical Trials. Statistics in
Biopharmaceutical Research, 9(3), 268–271. https://doi.org/10.1080/19466315.2017.1302358
Bebu, I., & Lachin, J. M. (2016). Large sample inference for a win
ratio analysis of a composite outcome based on prioritized components.
Biostatistics, 17(1), 178–187. https://doi.org/10.1093/biostatistics/kxv032
Bennett, S. (1983). Analysis of survival data by the proportional odds
model. Statistics in Medicine, 2(2), 273–277. https://doi.org/10.1002/sim.4780020223
Brunner, E., Vandemeulebroecke, M., & Mütze, T. (2021). Win odds: An
adaptation of the win ratio to include ties. Statistics in
Medicine, 40(14), 3367–3384. https://doi.org/10.1002/sim.8967
Buyse, M. (2010). Generalized pairwise comparisons of prioritized
outcomes in the two-sample problem. Statistics in
Medicine, 29(30), 3245–3257. https://doi.org/10.1002/sim.3923
Cheung, L. C., Pan, Q., Hyun, N., & Katki, H. A. (2019). Prioritized
concordance index for hierarchical survival outcomes. Statistics in
Medicine, 38(15), 2868–2882.
CHMP. (2020). Qualification opinion of clinically interpretable
treatment effect measures based on recurrent event endpoints that allow
for efficient statistical analyses. https://www.ema.europa.eu/en/documents/other/qualification-opinion-clinically-interpretable-treatment-effect-measures-based-recurrent-event_en.pdf.
Cui, Y., & Huang, B. (2023). WINS: The r WINS package. https://CRAN.R-project.org/package=WINS
Deltuvaite-Thomas, V., Verbeeck, J., Burzykowski, T., Buyse, M.,
Tournigand, C., Molenberghs, G., & Thas, O. (2022). Generalized
pairwise comparisons for censored data: An overview. Biometrical
Journal, 65(2). https://doi.org/10.1002/bimj.202100354
Dong, G., Hoaglin, D. C., Huang, B., Cui, Y., Wang, D., Cheng, Y., &
Gamalo-Siebers, M. (2023). The stratified win statistics (win ratio, win
odds, and net benefit). Pharmaceutical Statistics,
22(4), 748–756. https://doi.org/10.1002/pst.2293
Dong, G., Hoaglin, D. C., Qiu, J., Matsouaka, R. A., Chang, Y.-W., Wang,
J., & Vandemeulebroecke, M. (2020). The Win Ratio: On Interpretation
and Handling of Ties. Statistics in Biopharmaceutical Research,
12(1), 99–106. https://doi.org/10.1080/19466315.2019.1575279
Dong, G., Huang, B., Chang, Y.-W., Seifu, Y., Song, J., & Hoaglin,
D. C. (2020a). The win ratio: Impact of censoring and
follow-up time and use with nonproportional hazards.
Pharmaceutical Statistics, 19(3), 168–177. https://doi.org/10.1002/pst.1977
Dong, G., Huang, B., Verbeeck, J., Cui, Y., Song, J., Gamalo-Siebers,
M., Wang, D., Hoaglin, D. C., Seifu, Y., Mütze, T., & Kolassa, J.
(2022). Win statistics (win ratio, win odds, and net benefit) can
complement one another to show the strength of the treatment effect on
time-to-event outcomes. Pharmaceutical
Statistics, 22(1), 20–33. https://doi.org/10.1002/pst.2251
Dong, G., Huang, B., Wang, D., Verbeeck, J., Wang, J., & Hoaglin, D.
C. (2021). Adjusting win statistics for dependent censoring.
Pharmaceutical Statistics, 20(3), 440–450. https://doi.org/10.1002/pst.2086
Dong, G., Li, D., Ballerstedt, S., & Vandemeulebroecke, M. (2016). A
generalized analytic solution to the win ratio to analyze a composite
endpoint considering the clinical importance order among components.
Pharmaceutical Statistics, 15(5), 430–437. https://doi.org/10.1002/pst.1763
Dong, G., Mao, L., Huang, B., Gamalo-Siebers, M., Wang, J., Yu, G.,
& Hoaglin, D. C. (2020b). The inverse-probability-of-censoring
weighting (IPCW) adjusted win ratio statistic: an unbiased estimator in
the presence of independent censoring. Journal of Biopharmaceutical
Statistics, 30(5), 882–899. https://doi.org/10.1080/10543406.2020.1757692
Dong, G., Qiu, J., Wang, D., & Vandemeulebroecke, M. (2017). The
stratified win ratio. Journal of Biopharmaceutical Statistics,
28(4), 778–796. https://doi.org/10.1080/10543406.2017.1397007
EUnetHTA. (2015). Guidance for industry: Multiple endpoints in
clinical trials. https://www.eunethta.eu/wp-content/uploads/2018/01/Endpoints-used-for-Relative-Effectiveness-Assessment-Composite-endpoints_Amended-JA1-Guideline_Final-Nov-2015_0.pdf
Fay, M. P., Brittain, E. H., Shih, J. H., Follmann, D. A., &
Gabriel, E. E. (2018). Causal estimands and confidence intervals
associated with Wilcoxon-Mann-Whitney tests in
randomized experiments. Statistics in Medicine,
37(20), 2923–2937. https://doi.org/10.1002/sim.7799
FDA. (2022). Guidance for industry: Multiple endpoints in clinical
trials. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/multiple-endpoints-clinical-trials-guidance-industry
FDA. (2023). Guidance document: Adjusting for covariates in
randomized clinical trials for drugs and biological products. US
Food and Drug Adminstration. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/adjusting-covariates-randomized-clinical-trials-drugs-and-biological-products
Fine, J. P., & Gray, R. J. (1999). A Proportional Hazards Model for
the Subdistribution of a Competing Risk. Journal of the American
Statistical Association, 94(446), 496–509. https://doi.org/10.1080/01621459.1999.10474144
Finkelstein, D. M., & Schoenfeld, D. A. (1999). Combining mortality
and longitudinal measures in clinical trials. Statistics in
Medicine, 18(11), 1341–1354. https://doi.org/10.1002/(sici)1097-0258(19990615)18:11<1341::aid-sim129>3.0.co;2-7
Follmann, D., Fay, M. P., Hamasaki, T., & Evans, S. (2019). Analysis
of ordered composite endpoints. Statistics in Medicine,
39(5), 602–616. https://doi.org/10.1002/sim.8431
Freemantle, N., Calvert, M., Wood, J., Eastaugh, J., & Griffin, C.
(2003). Composite Outcomes in Randomized Trials. JAMA,
289(19), 2554. https://doi.org/10.1001/jama.289.19.2554
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization
paths for generalized linear models via coordinate descent. Journal
of Statistical Software, 33(1), 1.
Fritsch, A., Schlömer, P., Mendolia, F., Mütze, T., &
Jahn-Eimermacher, A. (2023). Efficiency Comparison of Analysis Methods
for Recurrent Event and Time-to-First Event Endpoints in the Presence of
Terminal EventsApplication to Clinical Trials in Chronic
Heart Failure. Statistics in Biopharmaceutical Research,
15(2), 268–279. https://doi.org/10.1080/19466315.2021.1945488
Gasparyan, S. B., Folkvaljon, F., Bengtsson, O., Buenconsejo, J., &
Koch, G. G. (2020). Adjusted win ratio with stratification: Calculation
methods and interpretation. Statistical Methods in Medical
Research, 30(2), 580–611. https://doi.org/10.1177/0962280220942558
Gasparyan, S. B., Kowalewski, E. K., Folkvaljon, F., Bengtsson, O.,
Buenconsejo, J., Adler, J., & Koch, G. G. (2021). Power and sample
size calculation for the win odds test: application to an ordinal
endpoint in COVID-19 trials. Journal of Biopharmaceutical
Statistics, 31(6), 765–787. https://doi.org/10.1080/10543406.2021.1968893
Gehan, E. A. (1965). A generalized Wilcoxon test for comparing
arbitrarily singly-censored samples. Biometrika,
52(1-2), 203–224. https://doi.org/10.1093/biomet/52.1-2.203
Ghosh, D., & Lin, D. Y. (2000). Nonparametric Analysis of Recurrent
Events and Death. Biometrics, 56(2), 554–562. https://doi.org/10.1111/j.0006-341x.2000.00554.x
Gray, R. J. (1988). A class of K-sample tests for comparing the
cumulative incidence of a competing risk. The Annals of
Statistics, 16(3). https://doi.org/10.1214/aos/1176350951
Harrell, F. E., Califf, R. M., Pryor, D. B., Lee, K. L., & Rosati,
R. A. (1982). Evaluating the yield of medical tests. JAMA,
247(18), 2543–2546.
Harrell, F. E., Lee, K. L., Califf, R. M., Pryor, D. B., & Rosati,
R. A. (1984). Regression modelling strategies for improved prognostic
prediction. Statistics in Medicine, 3(2), 143–152.
ICH. (1998). Statistical principles for clinical trials.
London: European Medicines Evaluation Agency.
ICH. (2020). ICH E9 (R1) addendum on estimands and sensitivity
analysis in clinical trials to the guideline on statistical principles
for clinical trials, step 5. London: European Medicines Evaluation
Agency.
Ionan, A. C., Paterniti, M., Mehrotra, D. V., Scott, J., Ratitch, B.,
Collins, S., Gomatam, S., Nie, L., Rufibach, K., & Bretz, F. (2022).
Clinical and Statistical Perspectives on the ICH E9(R1) Estimand
Framework Implementation. Statistics in Biopharmaceutical
Research, 15(3), 554–559. https://doi.org/10.1080/19466315.2022.2081601
Li, H., Chen, W.-C., Lu, N., Tang, R., & Zhao, Y. (2024). The
elusiveness of the win ratio parameter in the presence of missing data.
Therapeutic Innovation & Regulatory Science, 1–2.
Lin, D. Y., Wei, L. J., & Ying, Z. (1993). Checking the Cox model
with cumulative sums of martingale-based residuals. Biometrika,
80(3), 557–572. https://doi.org/10.1093/biomet/80.3.557
Lu, Y., & Tian, L. (2021). Statistical Considerations for Sequential
Analysis of the Restricted Mean Survival Time for Randomized Clinical
Trials. Statistics in Biopharmaceutical Research,
13(2), 210–218. https://doi.org/10.1080/19466315.2020.1816491
Luo, X., Huang, B., & Quan, H. (2019). Design and monitoring of
survival trials based on restricted mean survival times. Clinical
Trials, 16(6), 616–625. https://doi.org/10.1177/1740774519871447
Luo, X., Qiu, J., Bai, S., & Tian, H. (2017). Weighted win loss
approach for analyzing prioritized outcomes. Statistics in
Medicine, 36(15), 2452–2465. https://doi.org/10.1002/sim.7284
Luo, X., Tian, H., Mohanty, S., & Tsai, W. Y. (2015). An Alternative
Approach to Confidence Interval Estimation for the Win Ratio Statistic.
Biometrics, 71(1), 139–145. https://doi.org/10.1111/biom.12225
Mao, L. (2018). On causal estimation using U-statistics. Biometrika,
105(1), 215–220. https://doi.org/10.1093/biomet/asx071
Mao, L. (2019). On the Alternative Hypotheses for the Win Ratio.
Biometrics, 75(1), 347–351. https://doi.org/10.1111/biom.12954
Mao, L. (2023a). Nonparametric Inference of General While-Alive
Estimands for Recurrent Events. Biometrics, 79(3),
1749–1760. https://doi.org/10.1111/biom.13709
Mao, L. (2023b). On restricted mean time in favor of treatment.
Biometrics, 79(1), 61–72. https://doi.org/10.1111/biom.13570
Mao, L. (2023c). Power and Sample Size Calculations for the Restricted
Mean Time Analysis of Prioritized Composite Endpoints. Statistics in
Biopharmaceutical Research, 15(3), 540–548. https://doi.org/10.1080/19466315.2022.2110936
Mao, L. (2023d). Study Design for Restricted Mean Time Analysis of
Recurrent Events and Death. Biometrics, 79(4),
3701–3714. https://doi.org/10.1111/biom.13923
Mao, L. (2024). Defining estimand for the win ratio: Separate the true
effect from censoring. Clinical Trials, 21(5),
584–594.
Mao, L. (2025). Regularized win ratio regression for variable selection
and risk prediction, with an application to a cardiovascular trial.
BMC Medical Research Methodology, 25(1). https://doi.org/10.1186/s12874-025-02554-w
Mao, L., & Kim, K. (2021). Statistical Models for Composite
Endpoints of Death and Nonfatal Events: A Review. Statistics in
Biopharmaceutical Research, 13(3), 260–269. https://doi.org/10.1080/19466315.2021.1927824
Mao, L., Kim, K., & Li, Y. (2022). On recurrent-event win ratio.
Statistical Methods in Medical Research, 31(6),
1120–1134. https://doi.org/10.1177/09622802221084134
Mao, L., Kim, K., & Miao, X. (2022). Sample size formula for general
win ratio analysis. Biometrics, 78(3), 1257–1268. https://doi.org/10.1111/biom.13501
Mao, L., & Lin, D. Y. (2016). Semiparametric regression for the
weighted composite endpoint of recurrent and terminal events.
Biostatistics, 17(2), 390–403. https://doi.org/10.1093/biostatistics/kxv050
Mao, L., & Wang, T. (2021). A class of proportional
win-fractions regression models for composite outcomes.
Biometrics, 77(4), 1265–1275. https://doi.org/10.1111/biom.13382
Mao, L., & Wang, T. (2024). Dissecting the restricted mean time in
favor of treatment. Journal of Biopharmaceutical Statistics,
34(1), 111–126. https://doi.org/10.1080/10543406.2023.2210658
Moertel, C. G., Fleming, T. R., Macdonald, J. S., Haller, D. G., Laurie,
J. A., Goodman, P. J., Ungerleider, J. S., Emerson, W. A., Tormey, D.
C., Glick, J. H., Veeder, M. H., & Mailliard, J. A. (1990).
Levamisole and Fluorouracil for Adjuvant Therapy of Resected Colon
Carcinoma. New England Journal of Medicine, 322(6),
352–358. https://doi.org/10.1056/nejm199002083220602
Murphy, S. A., Rossini, A. J., & Vaart, A. W. van der. (1997).
Maximum Likelihood Estimation in the Proportional Odds Model.
Journal of the American Statistical Association,
92(439), 968–976. https://doi.org/10.1080/01621459.1997.10474051
O’Connor, C. M., Whellan, D. J., Lee, K. L., Keteyian, S. J., Cooper, L.
S., Ellis, S. J., Leifer, E. S., Kraus, W. E., Kitzman, D. W.,
Blumenthal, J. A., Rendall, D. S., Miller, N. H., Fleg, J. L., Schulman,
K. A., McKelvie, R. S., Zannad, F., Piña, I. L., & HF-ACTION
Investigators, for the. (2009). Efficacy and Safety of Exercise Training
in Patients With Chronic Heart Failure. JAMA, 301(14),
1439. https://doi.org/10.1001/jama.2009.454
Oakes, D. (1989). Bivariate Survival Models Induced by Frailties.
Journal of the American Statistical Association,
84(406), 487–493. https://doi.org/10.1080/01621459.1989.10478795
Oakes, D. (2016). On the win-ratio statistic in clinical trials with
multiple types of event. Biometrika, 103(3), 742–745.
https://doi.org/10.1093/biomet/asw026
Péron, J., Buyse, M., Ozenne, B., Roche, L., & Roy, P. (2016). An
extension of generalized pairwise comparisons for prioritized outcomes
in the presence of censoring. Statistical Methods in Medical
Research, 27(4), 1230–1239. https://doi.org/10.1177/0962280216658320
Pocock, S. J., Ariti, C. A., Collier, T. J., & Wang, D. (2012). The
win ratio: a new approach to the analysis of composite endpoints in
clinical trials based on clinical priorities. European Heart
Journal, 33(2), 176–182. https://doi.org/10.1093/eurheartj/ehr352
Pocock, S. J., Gregson, J., Collier, T. J., Ferreira, J. P., &
Stone, G. W. (2024). The win ratio in cardiology trials: Lessons learnt,
new developments, and wise future use. European Heart Journal,
45(44), 4684–4699.
Qu, Y., & Lipkovich, I. (2021). Implementation of ICH E9 (R1): A Few
Points Learned During the COVID-19 Pandemic. Therapeutic Innovation
& Regulatory Science, 55(5), 984–988. https://doi.org/10.1007/s43441-021-00297-6
Ratitch, B., Bell, J., Mallinckrodt, C., Bartlett, J. W., Goel, N.,
Molenberghs, G., O’Kelly, M., Singh, P., & Lipkovich, I. (2020).
Choosing Estimands in Clinical Trials: Putting the ICH E9(R1) Into
Practice. Therapeutic Innovation & Regulatory Science,
54(2), 324–341. https://doi.org/10.1007/s43441-019-00061-x
Redfors, B., Gregson, J., Crowley, A., McAndrew, T., Ben-Yehuda, O.,
Stone, G. W., & Pocock, S. J. (2020). The win ratio approach for
composite endpoints: practical guidance based on previous experience.
European Heart Journal, 41(46), 4391–4399. https://doi.org/10.1093/eurheartj/ehaa665
Royston, P., & Parmar, M. K. B. (2011). The use of restricted mean
survival time to estimate the treatment effect in randomized clinical
trials when the proportional hazards assumption is in doubt.
Statistics in Medicine, 30(19), 2409–2421. https://doi.org/10.1002/sim.4274
Schmidli, H., Roger, J. H., & Akacha, M. (2023a). Estimands for
Recurrent Event Endpoints in the Presence of a Terminal Event.
Statistics in Biopharmaceutical Research, 15(2),
238–248. https://doi.org/10.1080/19466315.2021.1895883
Schmidli, H., Roger, J. H., & Akacha, M. (2023b). Rejoinder to
Commentaries on “Estimands for Recurrent Event Endpoints in
the Presence of a Terminal Event”. Statistics in
Biopharmaceutical Research, 15(2), 255–256. https://doi.org/10.1080/19466315.2023.2166098
Seifu, Y., Mt-Isa, S., Duke, K., Gamalo-Siebers, M., Wang, W., Dong, G.,
& Kolassa, J. (2022). Design of paediatric trials with benefit-risk
endpoints using a composite score of adverse events of interest (AEI)
and win-statistics. Journal of Biopharmaceutical Statistics,
33(6), 696–707. https://doi.org/10.1080/10543406.2022.2153202
Song, J., Verbeeck, J., Huang, B., Hoaglin, D. C., Gamalo-Siebers, M.,
Seifu, Y., Wang, D., Cooner, F., & Dong, G. (2022). The win odds:
statistical inference and regression. Journal of Biopharmaceutical
Statistics, 33(2), 140–150. https://doi.org/10.1080/10543406.2022.2089156
Tian, L., Jin, H., Uno, H., Lu, Y., Huang, B., Anderson, K. M., &
Wei, L. (2020). On the empirical choice of the time window for
restricted mean survival time. Biometrics, 76(4),
1157–1166. https://doi.org/10.1111/biom.13237
Troendle, J. F., Leifer, E. S., Yang, S., Jeffries, N., Kim, D.-Y., Joo,
J., & O’Connor, C. M. (2024). Use of win time for ordered composite
endpoints in clinical trials. Statistics in Medicine,
43(10), 1920–1932. https://doi.org/10.1002/sim.10045
Tsiatis, A. A., Davidian, M., Zhang, M., & Lu, X. (2008). Covariate
adjustment for two-sample treatment comparisons in
randomized clinical trials: A principled yet flexible approach.
Statistics in Medicine, 27(23), 4658–4677. https://doi.org/10.1002/sim.3113
Uno, H., Cai, T., Pencina, M. J., D’Agostino, R. B., & Wei, L.-J.
(2011). On the c-statistics for evaluating overall adequacy of risk
prediction procedures with censored survival data. Statistics in
Medicine, 30(10), 1105–1117.
Uno, H., & Horiguchi, M. (2023). Ratio and difference of average
hazard with survival weight: New measures to quantify survival benefit
of new therapy. Statistics in Medicine, 42(7),
936–952. https://doi.org/10.1002/sim.9651
Verbeeck, J., De Backer, M., Verwerft, J., Salvaggio, S., Valgimigli,
M., Vranckx, P., Buyse, M., & Brunner, E. (2023). Generalized
Pairwise Comparisons to Assess Treatment Effects. Journal of the
American College of Cardiology, 82(13), 1360–1372. https://doi.org/10.1016/j.jacc.2023.06.047
Wang, B., Susukida, R., Mojtabai, R., Amin-Esmaeili, M., &
Rosenblum, M. (2021). Model-Robust Inference for Clinical Trials that
Improve Precision by Stratified Randomization and Covariate Adjustment.
Journal of the American Statistical Association,
118(542), 1152–1163. https://doi.org/10.1080/01621459.2021.1981338
Wang, B., Zhou, D., Zhang, J., Kim, Y., Chen, L.-W., Dunnmon, P., Bai,
S., Liu, Q., & Ishida, E. (2023). Statistical power considerations
in the use of win ratio in cardiovascular outcome trials.
Contemporary Clinical Trials, 124, 107040. https://doi.org/10.1016/j.cct.2022.107040
Wang, T., Li, Y., & Qu, Y. (2024). Restricted time win ratio: from
estimands to estimation. Statistics in Biopharmaceutical
Research, 1–18. https://doi.org/10.1080/19466315.2024.2332675
Wang, T., & Mao, L. (2022). Stratified proportional
win-fractions regression analysis. Statistics in
Medicine, 41(26), 5305–5318. https://doi.org/10.1002/sim.9570
Wang, T., Zilinskas, R., Li, Y., & Qu, Y. (2023). Missing Data
Imputation for a Multivariate Outcome of Mixed Variable Types.
Statistics in Biopharmaceutical Research, 15(4),
826–837. https://doi.org/10.1080/19466315.2023.2169753
Wei, J., Mütze, T., Jahn-Eimermacher, A., & Roger, J. (2023).
Properties of Two While-Alive Estimands for Recurrent Events and Their
Potential Estimators. Statistics in Biopharmaceutical Research,
15(2), 257–267. https://doi.org/10.1080/19466315.2021.1994457
Wu, P., Han, Y., Chen, T., & Tu, X. M. (2013). Causal inference for
Mann-Whitney-Wilcoxon rank sum and other nonparametric statistics.
Statistics in Medicine, 33(8), 1261–1271. https://doi.org/10.1002/sim.6026
Yang, S., & Troendle, J. (2020). Event-specific win ratios and
testing with terminal and non-terminal events. Clinical Trials,
18(2), 180–187. https://doi.org/10.1177/1740774520972408
Yang, S., Troendle, J., Pak, D., & Leifer, E. (2022).
Event-specific win ratios for inference with terminal and
non-terminal events. Statistics in Medicine,
41(7), 1225–1241. https://doi.org/10.1002/sim.9266
Ye, T., Shao, J., Yi, Y., & Zhao, Q. (2023). Toward Better Practice
of Covariate Adjustment in Analyzing Randomized Clinical Trials.
Journal of the American Statistical Association,
118(544), 2370–2382. https://doi.org/10.1080/01621459.2022.2049278
Yu, R. X., & Ganju, J. (2022). Sample size formula for a win ratio
endpoint. Statistics in Medicine, 41(6), 950–963. https://doi.org/10.1002/sim.9297
Zhou, T. J., LaValley, M. P., Nelson, K. P., Cabral, H. J., &
Massaro, J. M. (2022). Calculating power for the Finkelstein and
Schoenfeld test statistic for a composite endpoint with two components.
Statistics in Medicine, 41(17), 3321–3335. https://doi.org/10.1002/sim.9419
Zinman, B., Wanner, C., Lachin, J. M., Fitchett, D., Bluhmki, E.,
Hantel, S., Mattheus, M., Devins, T., Johansen, O. E., Woerle, H. J.,
Broedl, U. C., & Inzucchi, S. E. (2015). Empagliflozin,
Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. New
England Journal of Medicine, 373(22), 2117–2128. https://doi.org/10.1056/nejmoa1504720
Zou, H., & Hastie, T. (2005). Regularization and variable selection
via the elastic net. Journal of the Royal Statistical Society Series
B: Statistical Methodology, 67(2), 301–320.