Statistical Methods for Composite Endpoints: Win Ratio and Beyond

Chapter 3 - Nonparametric Estimation

Lu Mao

Department of Biostatistics & Medical Informatics

University of Wisconsin-Madison

Aug 3, 2024

Outline

  • Restricted win ratio

    • WR estimand under fixed time frame (WINS package)
  • Restricted mean time in favor of treatment

    • An extension of RMST
    • HF-ACTION example (rmt package)
  • While alive analysis of weighted total events

    • Adjusts for duration of survival
    • HF-ACTION example (WA package)

    \[\newcommand{\d}{{\rm d}}\] \[\newcommand{\T}{{\rm T}}\] \[\newcommand{\dd}{{\rm d}}\] \[\newcommand{\cc}{{\rm c}}\] \[\newcommand{\pr}{{\rm pr}}\] \[\newcommand{\var}{{\rm var}}\] \[\newcommand{\se}{{\rm se}}\] \[\newcommand{\indep}{\perp \!\!\! \perp}\] \[\newcommand{\Pn}{n^{-1}\sum_{i=1}^n}\] \[ \newcommand\mymathop[1]{\mathop{\operatorname{#1}}} \] \[ \newcommand{\Ut}{{n \choose 2}^{-1}\sum_{i<j}\sum} \] \[ \def\a{{(a)}} \def\b{{(1-a)}} \def\t{{(1)}} \def\c{{(0)}} \def\d{{\rm d}} \def\T{{\rm T}} \def\bs{\boldsymbol} \]

Restricted Win Ratio

The Estimand Issue

  • WR estimand depends on censoring
    • Mixing different time frames \([0, C_i^\t\wedge C_j^\c]\) in win-loss calculations
    • Censoring-weighted average of time-dependent win-loss (Ch 2) \[ \frac{\hat w_{1,0}}{\hat w_{0,1}}\to \frac{\int_0^\infty\pr(\mbox{Treatment wins by } t)\dd G(t)} {\int_0^\infty\pr(\mbox{Control wins by } t)\dd G(t)} \]
      • \(G(t)\): Distribution function of \(C^\t\wedge C^\c\)
    • Trial-dependent; lacks generalizability
  • Two ways to construct estimand (Ch 1)
    • Pre-define restriction time
    • Specify a time-constant WR model (Ch 4)

Time Restriction - Univariate

  • Outcome data
    • \(D^\a\): survival time for a patient in group \(a = 1, 0\)
      • \(S^\a(t) = P(D^\a>t)\)
  • Time restriction: a familiar concept
    • Five-year survival rate of breast cancer patients
      • Estimand: \(S^\t(\tau) - S^\c(\tau)\)
    • Five-year average survival time
      • Estimand: \(E\{\min(D^\t, \tau)\} - E\{\min(D^\c, \tau)\}\)
      • Restricted mean survival time (RMST) (Tian et al., 2020)
    • Restriction time \(\tau=5\) years (pre-specify)

Time Restriction - WR

  • Two-tiered composite
    • \(D^\a\): survival time; \(T_1^\a\): time to first nonfatal event
  • Restricted win/loss probability
    • Image all patients followed up to \(\tau\) \[\begin{align}\label{eq:wl_2comp} w_{a, 1-a}(\tau) &= \underbrace{\pr\{D^\b < \min(D^\a, \tau)\}}_{\mbox{win on survival}}\\ & + \underbrace{\pr\{\min(D^\t, D^\c) > \tau, T^\b < \min(T^\a, \tau)\}}_{\mbox{tie on survival, win on nonfatal event}} \end{align}\]
    • Restricted (Pocock) WR: \({\rm WR}(\tau)=w_{1, 0}(\tau)/w_{0, 1}(\tau)\)

Estimation: IPCW or MI

  • General win function
    • Win/loss probability by \(t\) \[ w_{a, 1-a}(\tau)=\pr\left\{\mathcal W(\mathcal H^{*{(a)}}, \mathcal H^{*{(1-a)}})(\tau)=1\right\} \]
  • Estimation: deal with data censored before \(\tau\)

RMT-IF

A Variation of RWR

  • Take time difference into account
    • \(w_{a, 1-a}(\tau)\): win probability by \(\tau\) \[ w_{1, 0}(\tau) - w_{0, 1}(\tau) = \mbox{Restricted proportional in favor (net benefit)} \]
    • \(w_{a, 1-a}(\tau)\): re-define as average win time by \(\tau\) \[ w_{1, 0}(\tau) - w_{0, 1}(\tau) = \mbox{Restricted mean time in favor (RMT-IF)} \]
  • RMT-IF
    • Measures net average time treatment wins against control
    • Convenient with multistate outcomes

Multistate Outcomes

  • Reformulate outcomes
    • Multistate process: \(Y(t) \in \{0, 1,\ldots, K, \infty\}\)
      • \(0\): initial state (e.g., remission, event-free)
      • \(1, \ldots, K\): a series of progressively worse states
      • \(\infty\): death
    • Examples
      • \(1\): relapse; \(2\): metastasis
      • \(1, 2, \ldots\): cumulative number of hospitalizations

Time on a Win or Loss

  • Pairwise win-loss time
    • \(Y^\t(t)\) vs \(Y^\c(t)\) over \([0, \tau]\)
    • Win time \(=\) time residing in a lower-tiered state \[ W^{(a, 1-a)}(\tau)=\int_0^\tau I\{Y^\a(t)<Y^\b(t)\}\d t \]

Net Average Win Time

  • Etimand of treatment effect
    • RMT-IF of treatment (Mao, 2023b) \[ \mu(\tau) = w_{1, 0}(\tau) - w_{0, 1}(\tau) \]
      • Average win time: \(w_{a, 1-a}(\tau) = E\{W^{(a, 1-a)}(\tau)\}\)
    • \(\mu(\tau)\): net average win time by treatment vs control
      • Reduces to difference in RMST in life-death model
    • Decomposition: Time won on which component?
      • Extra survival time + extra relapse-free time + …

Decomposition

  • Stage-wise effects \(\mu(\tau) = \sum_{k=1}^{K,\infty} \mu_k(\tau)\)
    • Average win time on state \(k\) (being in a better state) \[w_{a, 1-a, k}(\tau)=E\left\{\int_0^\tau I\{Y^{(a)}(t)<Y^{(1-a)}(t) = k\}{\rm d}t\right\}\]
    • Net average win time on state \(k\) \[ \mu_k(\tau)=w_{1, 0, k}(\tau) - w_{0, 1, k}(\tau) \]
      • \(\mu_\infty(\tau)\): net win time on survival \(=\) difference in \(\tau\)-RMST
      • \(\mu_2(\tau)\): extra metastasis-free time; \(\mu_1(\tau)\): extra relapse-free time
    • Further decomposition (Mao & Wang, 2024)
      • \(\mu_k(\tau)=\sum_{j < k}\mu_{jk}(\tau)\): net average time improved from state \(k\) to state \(j\)
      • \(\mu_\infty(\tau)=\mu_{0,\infty}(\tau)+ \mu_{1,\infty}(\tau)+\mu_{2,\infty}(\tau)\): net survival time in different states

Simplify for Progressive Processes

  • Progressive process
    • Definition: \(Y^{(a)}(t)\leq Y^{(a)}(s)\) for all \(0\leq t\leq s\)
      • Only marching forward (all earlier examples)
    • Transition time \(T_k^{(a)}\): time to transition to a state \(\geq k\)
      • \(T_1^{(a)}\): time to relapse/metastasis/death
      • \(T_2^{(a)}\): time to metastasis/death
      • \(T_\infty^{(a)}=D^{(a)}\): time to death
    • Reformulation: \(Y^{(a)}(\cdot)\equiv \big\{0\leq T_1^{(a)}\leq\cdots\leq T_K^{(a)}\leq T_\infty^{(a)}\big\}\)
      • A progressive process \(\Longleftrightarrow\) a sequence of transition events

Delve into Estimand

  • Average win time on state \(k\)
    • Re-expression with \(S_k^{(a)}(t)=\pr\{T_k^{(a)}> t\}\) \[\begin{align} w_{a, 1-a, k}(\tau)&=\int_0^\tau \pr\{Y^{(a)}(t)< k\}\pr\{Y^{(1-a)}(t) = k\}{\rm d}t\\ &=\int_0^\tau \pr\{T_k^{(a)}> t\}\pr\{T_k^{(1-a)}\leq t < T_{k+1}^{(1-a)}\}{\rm d}t\\ &=\int_0^\tau S_k^{(a)}(t)\left\{S_{k+1}^{(1-a)}(t) - S_k^{(1-a)}(t)\right\}{\rm d}t\\ \end{align}\]
    • Net average win time \[\mu_k(\tau)=w_{1, 0, k}(\tau)-w_{0, 1, k}(\tau)= \int_0^\tau \left\{S_k^{(1)}(t)S_{k+1}^{(0)}(t) - S_k^{(0)}(t)S_{k+1}^{(1)}(t)\right\}{\rm d}t\]

Observed Data & Estimation

  • Censored observations
    • \(Y(t\wedge C)\), or \[ (X_k^{(a)}, \delta_k^{(a)}),\,\,\, k =1,\ldots, K, \infty \]
      • \(X_k^{(a)}= \min(T_k^{(a)}, C^{(a)})\); \(\delta_k^{(a)}= I(T_k^{(a)}\leq C^{(a)})\); \(C^{(a)}=\) censoring time
  • Estimation
    • Plug-in KM estimator \(\hat S_k^{(a)}(t)\) \[ \hat\mu_k(\tau)= \int_0^\tau \left\{\hat S_k^{(1)}(t)\hat S_{k+1}^{(0)}(t) - \hat S_k^{(0)}(t)\hat S_{k+1}^{(1)}(t)\right\}{\rm d}t \]
    • Robust variance estimator for \(\hat\mu_k(\tau)\)

Hypothesis Testing

  • Test of overall effect
    • \(\chi_1^2\) test based on \(\hat\mu(\tau)=\sum_{k=1}^{K,\infty}\hat\mu_k(\tau)\) for \[ H_0: \mu(\tau)= 0 \]
  • Joint test on components
    • \(\chi_{K+1}^2\) test based on \(\hat\mu_1(\tau),\ldots,\hat\mu_K(\tau),\hat\mu_\infty(\tau)\) \[ H_0: \mu_1(\tau)=\cdots=\mu_K(\tau)=\mu_\infty(\tau) \]
      • May be more powerful under differential component-wise effects
      • Test individual components for secondary analyses

Sample Size Calculation

  • Bivariate illness-death
    • Gumbel–Hougaard copula (Mao, 2023c)
      • Same model used for sample size calculation for WR
    • Input parameters
      • Baseline: Hazards for death & relapse, association parameter
      • Effect sizes: Component-wise hazard ratios
  • Recurrent events with death
    • Homogeneous Markov model (Mao, 2023d)
    • Input parameters
      • Baseline: Intensities for another hospitalization or death, having had \(k-1\) hospitalizations \((k=1,2,\ldots)\)
      • Effect sizes: Intensity (risk) ratios for all transitions

Software: rmt::rmtfit() (I)

  • Input data format (long)
    • Standard multistate
      • status = k for entry into state \(k\), K+1 for death, 0 for censoring
    • Recurrent events with death
      • status = 1 for nonfatal event, 2 for death, 0 for censoring
data(hfaction)
head(hfaction) # right coding for status
#>       patid       time status trt_ab age60
#>  HFACT00001 0.60506502      1      0     1
#>  HFACT00001 1.04859685      0      0     1
#>  HFACT00002 0.06297057      1      0     1
#>  HFACT00002 0.35865845      1      0     1
#>  HFACT00002 0.39698836      1      0     1
#>  HFACT00002 3.83299110      0      0     1
#>  ...

Software: rmt::rmtfit() (II)

  • Basic syntax
library(rmt)
# trt: binary treatment
obj <- rmtfit(id, time, status, trt, 
              type = c("multistate", "recurrent"))
  • Output: a list of class rmtfit
    • obj$t: \(t\); obj$mu: a matrix of \((K+2)\) rows, \(\hat\mu_k(t)\) in \(k\)th row, \(\hat\mu(t)\) in last; obj$var: variances of point estimates in mu
    • summary(obj, tau) for summary results on \(\mu(\tau)\), including the \(\mu_k(\tau)\)
      • Recurrent events: specify Kmax = k to merge \(\mu_{k+}(\tau)\sum_{k'=k}^K=\mu_{k'}(\tau)\)
    • plot(obj) to plot \(\hat\mu(t)\) against \(t\)

HF-ACTION: Standard Analyses

  • Traditional composite and overall survival

R-Code

  • Fit 4y-RMT-IF
obj <- rmtfit(hfaction$patid, hfaction$time, hfaction$status, hfaction$trt_ab, 
              type = "recurrent")
summary(obj, Kmax = 4, tau = 3.97) ## combine recurrent events >= 4
# Restricted mean time in favor of group "1" by time tau = 3.97:
#   Estimate    Std.Err Z value Pr(>|z|)    
# Event 1   0.0140515  0.0498836  0.2817 0.778184    
# Event 2   0.0358028  0.0499618  0.7166 0.473619    
# Event 3   0.1385287  0.0409533  3.3826 0.000718 ***
# Event 4+ -0.0064731  0.0600813 -0.1077 0.914203    
# Survival  0.2384169  0.1143484  2.0850 0.037069 *  
# Overall   0.4203268  0.1777363  2.3649 0.018035 * 

Graphics

  • \(\hat\mu(t)\) as a function of \(t\)

    • Overall RMT-IF becomes significant after 1 year (see lower CL)
    plot(obj, conf = TRUE, conf.col = "gray", lwd = 2, xlab="t (years)",
         ylab = "expression(mu(t))")

Inference Results

  • 4-year RMT-IF of exercise training
    • Training on average gains 5.1 months (\(P\)=0.018) in favorable state
      • 2.9 months net survival \(+\) 2.2 months net time with fewer hosps (little effect on 1st)
Table 1: Analysis of 4-year RMT-IF of exercise training in HF-ACTION trial.
Estimate SE P-value
Hopitalization 2.18 1.22 0.073
1 0.17 0.60 0.778
2 0.43 0.60 0.474
3 1.66 0.49 <0.001
4+ -0.08 0.72 0.914
Death 2.86 1.37 0.037
Overall 5.04 2.13 0.018

While-Alive Weighted Loss

Length of Exposure

  • HF-ACTION
    • Trained survive longer \(\to\) more hospitalizations
Usual care (N = 221) Exercise training (N = 205)
Death 57 (25.8%) 36 (17.6%)
Avg # hospitalization (SD) 2.6 (3.1) 2.2 (3.1)
  • Impact of differential survival time
    • Hierarchical: WR, RMT-IF (death > nonfatal)
      • Hospitalizations considered only with tied (equal) survival
    • Quantitative weighting: cumulative mean (death = \(w_D\times\) nonfatal; Ch 1)
      • Need to adjust for length of exposure (survival)

Weighted Endpoints

  • Weighted composite event process (Ch 1)
    • \(N^{*\a}_{\rm R}(t)=w_DN^{*\a}_D(t)+\sum_{k=1}^Kw_kN^{*\a}_k(t)\)
      • \({\rm d}N_{\rm R}^{*(a)}(t)=0\) for \(t>D^{(a)}\): no event after death
  • Traditional methods
    • Cause-specific rate (death as censoring): \(E\left\{{\rm d}N_{\rm R}^{*(a)}(t)\mid D^{(a)}\geq t\right\}\)
      • Lacking in causal interpretation: \(\left\{\cdot\mid D^\t\geq t\right\}\) vs \(\left\{\cdot\mid D^\c\geq t\right\}\) at post-randomization \(t\)
    • Cumulative mean: \(E\left\{N_{\rm R}^{*(a)}(t)\right\}\) (Ghosh & Lin, 2000; Mao & Lin, 2016)
      • Ignores length of exposure

Exposure-Adjusted Rate

  • While-alive event rate
    • Estimand \[\ell^{(a)}(\tau) = \frac{E\left\{N_{\rm R}^{*(a)}(\tau)\right\}}{E\left(D^{(a)}\wedge\tau\right)} =\frac{\mbox{Mean # of weighted events by $\tau$}}{\mbox{Mean survival time by $\tau$}} \]
    • Average (weighted) event rate in \([0, \tau]\) per person-time alive
    • Proposed as a clinically interpretable measure to Committee for Medicinal Products for Human Use (CHMP) of European Medicines Agency (Akacha et al., 2018; CHMP, 2020)
      • Also called “exposure-weighted” event rate

General Estimands: Definition

  • While-alive loss rate
    • Estimand (Mao, 2023a) \[\ell^{(a)}(\tau) = \frac{E\left\{\mathcal L\left(\mathcal H^{*(a)}\right)(\tau)\right\}}{E\left(D^{(a)}\wedge\tau\right)}\]
      • \(\mathcal H^{*{(a)}}(t)=\left\{N^{*{(a)}}_D(u), N^{*{(a)}}_1(u), \ldots, N^{*{(a)}}_K(u):0\leq u\leq t\right\}\)
    • \(\mathcal L\left(\mathcal H^{*(a)}\right)(t)\): user-specified loss function satisfying
      • A function only of \(\mathcal H^{(a)}(t)\)
      • \(\mathcal L\left(\mathcal H^{*(a)}\right)({\rm d}t)\equiv 0\) for \(t>D^{(a)}\) (accrue loss only when alive)
    • Average loss rate in \([0, \tau]\) per person-time alive

General Estimands: Examples

  • Difference choices of loss function
    • Original while-alive event rate \[\mathcal L\left(\mathcal H^{*(a)}\right)(t) = N_{\rm R}^{*(a)}(t)\]
    • Per-person-time mortality rate (Uno & Horiguchi, 2023) \[\mathcal L\left(\mathcal H^{*(a)}\right)(t) = N_D^{*(a)}(t)\]
    • More generally\[\mathcal L\left(\mathcal H^{*(a)}\right)(t) = \int_0^t \left\{w_{D, N^{*(a)}(u-)}(u)\dd N^{*\a}_D(t)+\sum_{k=1}^Kw_{k, N^{*(a)}(u-)}(u)\dd N^{*\a}_k(t)\right\}\]
      • \(w_{D,m}(u), w_{k,m}(u)\): weights for incident death/nonfatal events at \(u\) with \(m\) existing events

Cumulative and Differentials

  • Cumulative version
    • Survival-completed cumulative loss \[L^{(a)}(\tau)=\ell^{(a)}(\tau)\tau\]
      • Better graphics: \(\ell^{(a)}(\tau)\approx 0/0\) unstable for \(\tau\approx 0\)
      • Properties: \(L^{(a)}(0)=0\), \(L^{(a)}(t)\uparrow\) with \(t\), and \(L^{(a)}(t)\geq E\{\mathcal L(\mathcal H^{(a)})(t)\}\)
  • Measuring treatment effect
    • Risk (loss rate) ratio (RR): \(r(\tau)=\ell^{(1)}(\tau)/\ell^{(0)}(\tau)\)
      • Treatment reduces average loss rate by \(100\{1-r(\tau)\}\%\)
    • Absolute risk reduction: \(d(\tau)=\ell^{(1)}(\tau)-\ell^{(0)}(\tau)\)
      • Treatment reduces average loss rate by \(-d(\tau)\) (per person-time alive)

Nonparametric Estimation

  • With patients censored before \(\tau\)
    • Sample averages for numerator/denominator \[\ell^{(a)}(\tau) = \frac{E\left\{\mathcal L\left(\mathcal H^{*(a)}\right)(\tau)\right\}}{E\left(D^{(a)}\wedge\tau\right)}\]
    • Denominator (easy): RMST \(=\int_0^\tau S^{(a)}(t){\rm d}t\) (Royston & Parmar, 2011)
      • Plug-in KM estimator
    • Numerator (moderate) \(=\int_0^\tau S^{(a)}(t-)E\{\mathcal L(\mathcal H^{(a)})({\rm d}t)\mid D^{(a)}\geq t\}\)
      • Nelsen-Aalen-type estimator for \(E\{\mathcal L(\mathcal H^{(a)})({\rm d}t)\mid D^{(a)}\geq t\}\)
    • Robust variance estimation
    • Implementation in WA package

Software: WA::LRfit()

  • Basic syntax
    • id: unique patient identifier; time: event times; status: event types (1: recurrent event, 2: death, 0: censoring)
    • Dweight: weight for death relative to nonfatal
library(WA)
# trt: categorical treatment
obj <- LRfit(id, time, status, trt, Dweight = 0)
  • Output: a list of class LRfit
    • summary(obj, tau) to summarize results for \(r(\tau)=\ell^{(1)}(\tau)/\ell^{(0)}(\tau)\)
      • Add joint.test = TRUE to include joint test with RMST
    • plot(obj) to plot the cumulative (WA) loss \(L^\a(t)\) (\(a= 1, 0\))

HF-ACTION: Weighted Composite

  • 4y-loss rate (death = \(2\times\) hosp)
    • Risk ratio: \(79.8\%\) (\(P=0.102\)) reduction in risk
      • cf. Cumulative mean ratio (unadjusted): 85.7% (\(P=0.170\)) (Ch 1)
obj <- LRfit(hfaction$patid, hfaction$time, hfaction$status, 
              hfaction$trt_ab, Dweight = 2)
summary(obj, tau = 3.97)
# Analysis of log loss rate (LR) by tau = 3.97:
#                Estimate   Std.Err Z value Pr(>|z|)   
# Ref (Group 0)  0.262765  0.086018  3.0548 0.002252 **
# Group 1 vs 0  -0.226116  0.138131 -1.6370 0.101637 
# ---
# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

# Point and interval estimates for the LR ratio:
#               LR ratio 95% lower CL 95% higher CL
# Group 1 vs 0 0.7976253    0.6084453      1.045626

HF-ACTION: Survival Adjustment

  • Survival-adjusted vs unadjusted cumulative loss
    • Unadjusted shows attenuated effect

Conclusion

Notes

Summary

Nonparametric estimands by time restriction

  • Restricted WR
    • WR on all patients followed to \(\tau\)
  • RMT-IF
    • Net average win time on hierarchical states by \(\tau\)
      • rmt::rmtfit(id, time, status, trt)
  • While-alive weighted events
    • Compensate for differential survival by \(\tau\)
      • WA::LRfit(id, time, status, trt, Dweight)

References

Akacha, M., Binkowitz, B., Bretz, F., Fritsch, A., Hougaard, P., Jahn-Eimermacher, A., & al., et. (2018). Request for CHMP qualification opinion: Clinically interpretable treatment effect measures based on recurrent event endpoints that allow for efficient statistical analyses. http://www.ema.europa.eu/documents/other/qualification-opinion-treatment-effect-measures-when-using-recurrent-event-endpoints-applicants_en.pdf.
CHMP. (2020). Qualification opinion of clinically interpretable treatment effect measures based on recurrent event endpoints that allow for efficient statistical analyses. https://www.ema.europa.eu/en/documents/other/qualification-opinion-clinically-interpretable-treatment-effect-measures-based-recurrent-event_en.pdf.
Cui, Y., & Huang, B. (2023). WINS: The r WINS package. https://CRAN.R-project.org/package=WINS
Dong, G., Huang, B., Wang, D., Verbeeck, J., Wang, J., & Hoaglin, D. C. (2021). Adjusting win statistics for dependent censoring. Pharmaceutical Statistics, 20(3), 440–450. https://doi.org/10.1002/pst.2086
Dong, G., Mao, L., Huang, B., Gamalo-Siebers, M., Wang, J., Yu, G., & Hoaglin, D. C. (2020b). The inverse-probability-of-censoring weighting (IPCW) adjusted win ratio statistic: an unbiased estimator in the presence of independent censoring. Journal of Biopharmaceutical Statistics, 30(5), 882–899. https://doi.org/10.1080/10543406.2020.1757692
Fritsch, A., Schlömer, P., Mendolia, F., Mütze, T., & Jahn-Eimermacher, A. (2023). Efficiency Comparison of Analysis Methods for Recurrent Event and Time-to-First Event Endpoints in the Presence of Terminal EventsApplication to Clinical Trials in Chronic Heart Failure. Statistics in Biopharmaceutical Research, 15(2), 268–279. https://doi.org/10.1080/19466315.2021.1945488
Ghosh, D., & Lin, D. Y. (2000). Nonparametric Analysis of Recurrent Events and Death. Biometrics, 56(2), 554–562. https://doi.org/10.1111/j.0006-341x.2000.00554.x
Mao, L. (2023a). Nonparametric Inference of General While-Alive Estimands for Recurrent Events. Biometrics, 79(3), 1749–1760. https://doi.org/10.1111/biom.13709
Mao, L. (2023b). On restricted mean time in favor of treatment. Biometrics, 79(1), 61–72. https://doi.org/10.1111/biom.13570
Mao, L. (2023c). Power and Sample Size Calculations for the Restricted Mean Time Analysis of Prioritized Composite Endpoints. Statistics in Biopharmaceutical Research, 15(3), 540–548. https://doi.org/10.1080/19466315.2022.2110936
Mao, L. (2023d). Study Design for Restricted Mean Time Analysis of Recurrent Events and Death. Biometrics, 79(4), 3701–3714. https://doi.org/10.1111/biom.13923
Mao, L., & Lin, D. Y. (2016). Semiparametric regression for the weighted composite endpoint of recurrent and terminal events. Biostatistics, 17(2), 390–403. https://doi.org/10.1093/biostatistics/kxv050
Mao, L., & Wang, T. (2024). Dissecting the restricted mean time in favor of treatment. Journal of Biopharmaceutical Statistics, 34(1), 111–126. https://doi.org/10.1080/10543406.2023.2210658
Royston, P., & Parmar, M. K. B. (2011). The use of restricted mean survival time to estimate the treatment effect in randomized clinical trials when the proportional hazards assumption is in doubt. Statistics in Medicine, 30(19), 2409–2421. https://doi.org/10.1002/sim.4274
Schmidli, H., Roger, J. H., & Akacha, M. (2023a). Estimands for Recurrent Event Endpoints in the Presence of a Terminal Event. Statistics in Biopharmaceutical Research, 15(2), 238–248. https://doi.org/10.1080/19466315.2021.1895883
Schmidli, H., Roger, J. H., & Akacha, M. (2023b). Rejoinder to Commentaries on Estimands for Recurrent Event Endpoints in the Presence of a Terminal Event. Statistics in Biopharmaceutical Research, 15(2), 255–256. https://doi.org/10.1080/19466315.2023.2166098
Tian, L., Jin, H., Uno, H., Lu, Y., Huang, B., Anderson, K. M., & Wei, L. (2020). On the empirical choice of the time window for restricted mean survival time. Biometrics, 76(4), 1157–1166. https://doi.org/10.1111/biom.13237
Troendle, J. F., Leifer, E. S., Yang, S., Jeffries, N., Kim, D.-Y., Joo, J., & O’Connor, C. M. (2024). Use of win time for ordered composite endpoints in clinical trials. Statistics in Medicine, 43(10), 1920–1932. https://doi.org/10.1002/sim.10045
Uno, H., & Horiguchi, M. (2023). Ratio and difference of average hazard with survival weight: New measures to quantify survival benefit of new therapy. Statistics in Medicine, 42(7), 936–952. https://doi.org/10.1002/sim.9651
Wang, T., Li, Y., & Qu, Y. (2024). Restricted time win ratio: from estimands to estimation. Statistics in Biopharmaceutical Research, 1–18. https://doi.org/10.1080/19466315.2024.2332675
Wang, T., Zilinskas, R., Li, Y., & Qu, Y. (2023). Missing Data Imputation for a Multivariate Outcome of Mixed Variable Types. Statistics in Biopharmaceutical Research, 15(4), 826–837. https://doi.org/10.1080/19466315.2023.2169753
Wei, J., Mütze, T., Jahn-Eimermacher, A., & Roger, J. (2023). Properties of Two While-Alive Estimands for Recurrent Events and Their Potential Estimators. Statistics in Biopharmaceutical Research, 15(2), 257–267. https://doi.org/10.1080/19466315.2021.1994457