Akacha, M., Bretz, F., Ohlssen, D., Rosenkranz, G., & Schmidli, H. (2017). Estimands and Their Role in Clinical Trials.
Statistics in Biopharmaceutical Research,
9(3), 268–271.
https://doi.org/10.1080/19466315.2017.1302358
Bebu, I., & Lachin, J. M. (2016). Large sample inference for a win ratio analysis of a composite outcome based on prioritized components.
Biostatistics,
17(1), 178–187.
https://doi.org/10.1093/biostatistics/kxv032
Brunner, E., Vandemeulebroecke, M., & Mütze, T. (2021). Win odds: An adaptation of the win ratio to include ties.
Statistics in Medicine,
40(14), 3367–3384.
https://doi.org/10.1002/sim.8967
Buyse, M. (2010). Generalized pairwise comparisons of prioritized outcomes in the two
-sample problem.
Statistics in Medicine,
29(30), 3245–3257.
https://doi.org/10.1002/sim.3923
Deltuvaite-Thomas, V., Verbeeck, J., Burzykowski, T., Buyse, M., Tournigand, C., Molenberghs, G., & Thas, O. (2022). Generalized pairwise comparisons for censored data: An overview.
Biometrical Journal,
65(2).
https://doi.org/10.1002/bimj.202100354
Dong, G., Hoaglin, D. C., Qiu, J., Matsouaka, R. A., Chang, Y.-W., Wang, J., & Vandemeulebroecke, M. (2020). The Win Ratio: On Interpretation and Handling of Ties.
Statistics in Biopharmaceutical Research,
12(1), 99–106.
https://doi.org/10.1080/19466315.2019.1575279
Dong, G., Huang, B., Chang, Y.-W., Seifu, Y., Song, J., & Hoaglin, D. C. (2020a). The win ratio: Impact of censoring and follow
-up time and use with nonproportional hazards.
Pharmaceutical Statistics,
19(3), 168–177.
https://doi.org/10.1002/pst.1977
Dong, G., Huang, B., Verbeeck, J., Cui, Y., Song, J., Gamalo-Siebers, M., Wang, D., Hoaglin, D. C., Seifu, Y., Mütze, T., & Kolassa, J. (2022). Win statistics (win ratio, win odds, and net benefit) can complement one another to show the strength of the treatment effect on time
-to
-event outcomes.
Pharmaceutical Statistics,
22(1), 20–33.
https://doi.org/10.1002/pst.2251
Fine, J. P., & Gray, R. J. (1999). A Proportional Hazards Model for the Subdistribution of a Competing Risk.
Journal of the American Statistical Association,
94(446), 496–509.
https://doi.org/10.1080/01621459.1999.10474144
Freemantle, N., Calvert, M., Wood, J., Eastaugh, J., & Griffin, C. (2003). Composite Outcomes in Randomized Trials.
JAMA,
289(19), 2554.
https://doi.org/10.1001/jama.289.19.2554
Ghosh, D., & Lin, D. Y. (2000). Nonparametric Analysis of Recurrent Events and Death.
Biometrics,
56(2), 554–562.
https://doi.org/10.1111/j.0006-341x.2000.00554.x
Gray, R. J. (1988). A class of
\(K\)-sample tests for comparing the cumulative incidence of a competing risk.
The Annals of Statistics,
16(3).
https://doi.org/10.1214/aos/1176350951
ICH. (1998). Statistical principles for clinical trials. London: European Medicines Evaluation Agency.
ICH. (2020). ICH E9 (R1) addendum on estimands and sensitivity analysis in clinical trials to the guideline on statistical principles for clinical trials, step 5. London: European Medicines Evaluation Agency.
Ionan, A. C., Paterniti, M., Mehrotra, D. V., Scott, J., Ratitch, B., Collins, S., Gomatam, S., Nie, L., Rufibach, K., & Bretz, F. (2022). Clinical and Statistical Perspectives on the ICH E9(R1) Estimand Framework Implementation.
Statistics in Biopharmaceutical Research,
15(3), 554–559.
https://doi.org/10.1080/19466315.2022.2081601
Li, H., Chen, W.-C., Lu, N., Tang, R., & Zhao, Y. (2024). The elusiveness of the win ratio parameter in the presence of missing data. Therapeutic Innovation & Regulatory Science, 1–2.
Luo, X., Tian, H., Mohanty, S., & Tsai, W. Y. (2015). An Alternative Approach to Confidence Interval Estimation for the Win Ratio Statistic.
Biometrics,
71(1), 139–145.
https://doi.org/10.1111/biom.12225
Mao, L. (2019). On the Alternative Hypotheses for the Win Ratio.
Biometrics,
75(1), 347–351.
https://doi.org/10.1111/biom.12954
Mao, L. (2024). Defining estimand for the win ratio: Separate the true effect from censoring. Clinical Trials, 21(5), 584–594.
Mao, L., & Kim, K. (2021). Statistical Models for Composite Endpoints of Death and Nonfatal Events: A Review.
Statistics in Biopharmaceutical Research,
13(3), 260–269.
https://doi.org/10.1080/19466315.2021.1927824
Mao, L., & Lin, D. Y. (2016). Semiparametric regression for the weighted composite endpoint of recurrent and terminal events.
Biostatistics,
17(2), 390–403.
https://doi.org/10.1093/biostatistics/kxv050
Moertel, C. G., Fleming, T. R., Macdonald, J. S., Haller, D. G., Laurie, J. A., Goodman, P. J., Ungerleider, J. S., Emerson, W. A., Tormey, D. C., Glick, J. H., Veeder, M. H., & Mailliard, J. A. (1990). Levamisole and Fluorouracil for Adjuvant Therapy of Resected Colon Carcinoma.
New England Journal of Medicine,
322(6), 352–358.
https://doi.org/10.1056/nejm199002083220602
O’Connor, C. M., Whellan, D. J., Lee, K. L., Keteyian, S. J., Cooper, L. S., Ellis, S. J., Leifer, E. S., Kraus, W. E., Kitzman, D. W., Blumenthal, J. A., Rendall, D. S., Miller, N. H., Fleg, J. L., Schulman, K. A., McKelvie, R. S., Zannad, F., Piña, I. L., & HF-ACTION Investigators, for the. (2009). Efficacy and Safety of Exercise Training in Patients With Chronic Heart Failure.
JAMA,
301(14), 1439.
https://doi.org/10.1001/jama.2009.454
Oakes, D. (2016). On the win-ratio statistic in clinical trials with multiple types of event.
Biometrika,
103(3), 742–745.
https://doi.org/10.1093/biomet/asw026
Péron, J., Buyse, M., Ozenne, B., Roche, L., & Roy, P. (2016). An extension of generalized pairwise comparisons for prioritized outcomes in the presence of censoring.
Statistical Methods in Medical Research,
27(4), 1230–1239.
https://doi.org/10.1177/0962280216658320
Pocock, S. J., Ariti, C. A., Collier, T. J., & Wang, D. (2012). The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on clinical priorities.
European Heart Journal,
33(2), 176–182.
https://doi.org/10.1093/eurheartj/ehr352
Pocock, S. J., Gregson, J., Collier, T. J., Ferreira, J. P., & Stone, G. W. (2024). The win ratio in cardiology trials: Lessons learnt, new developments, and wise future use. European Heart Journal, 45(44), 4684–4699.
Qu, Y., & Lipkovich, I. (2021). Implementation of ICH E9 (R1): A Few Points Learned During the COVID-19 Pandemic.
Therapeutic Innovation & Regulatory Science,
55(5), 984–988.
https://doi.org/10.1007/s43441-021-00297-6
Ratitch, B., Bell, J., Mallinckrodt, C., Bartlett, J. W., Goel, N., Molenberghs, G., O’Kelly, M., Singh, P., & Lipkovich, I. (2020). Choosing Estimands in Clinical Trials: Putting the ICH E9(R1) Into Practice.
Therapeutic Innovation & Regulatory Science,
54(2), 324–341.
https://doi.org/10.1007/s43441-019-00061-x
Redfors, B., Gregson, J., Crowley, A., McAndrew, T., Ben-Yehuda, O., Stone, G. W., & Pocock, S. J. (2020). The win ratio approach for composite endpoints: practical guidance based on previous experience.
European Heart Journal,
41(46), 4391–4399.
https://doi.org/10.1093/eurheartj/ehaa665
Schmidli, H., Roger, J. H., & Akacha, M. (2023). Rejoinder to Commentaries on
“Estimands for Recurrent Event Endpoints in the Presence of a Terminal Event
”.
Statistics in Biopharmaceutical Research,
15(2), 255–256.
https://doi.org/10.1080/19466315.2023.2166098
Verbeeck, J., De Backer, M., Verwerft, J., Salvaggio, S., Valgimigli, M., Vranckx, P., Buyse, M., & Brunner, E. (2023). Generalized Pairwise Comparisons to Assess Treatment Effects.
Journal of the American College of Cardiology,
82(13), 1360–1372.
https://doi.org/10.1016/j.jacc.2023.06.047
Zinman, B., Wanner, C., Lachin, J. M., Fitchett, D., Bluhmki, E., Hantel, S., Mattheus, M., Devins, T., Johansen, O. E., Woerle, H. J., Broedl, U. C., & Inzucchi, S. E. (2015). Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes.
New England Journal of Medicine,
373(22), 2117–2128.
https://doi.org/10.1056/nejmoa1504720