Bebu, I., & Lachin, J. M. (2016). Large sample inference for a win ratio analysis of a composite outcome based on prioritized components.
Biostatistics,
17(1), 178–187.
https://doi.org/10.1093/biostatistics/kxv032
Cui, Y., & Huang, B. (2023).
WINS: The r WINS package.
https://CRAN.R-project.org/package=WINS
Dong, G., Huang, B., Chang, Y.-W., Seifu, Y., Song, J., & Hoaglin, D. C. (2020a). The win ratio: Impact of censoring and follow
-up time and use with nonproportional hazards.
Pharmaceutical Statistics,
19(3), 168–177.
https://doi.org/10.1002/pst.1977
Dong, G., Huang, B., Wang, D., Verbeeck, J., Wang, J., & Hoaglin, D. C. (2021). Adjusting win statistics for dependent censoring.
Pharmaceutical Statistics,
20(3), 440–450.
https://doi.org/10.1002/pst.2086
Dong, G., Mao, L., Huang, B., Gamalo-Siebers, M., Wang, J., Yu, G., & Hoaglin, D. C. (2020b). The inverse-probability-of-censoring weighting (IPCW) adjusted win ratio statistic: an unbiased estimator in the presence of independent censoring.
Journal of Biopharmaceutical Statistics,
30(5), 882–899.
https://doi.org/10.1080/10543406.2020.1757692
Gasparyan, S. B., Kowalewski, E. K., Folkvaljon, F., Bengtsson, O., Buenconsejo, J., Adler, J., & Koch, G. G. (2021). Power and sample size calculation for the win odds test: application to an ordinal endpoint in COVID-19 trials.
Journal of Biopharmaceutical Statistics,
31(6), 765–787.
https://doi.org/10.1080/10543406.2021.1968893
ICH. (2020). ICH E9 (R1) addendum on estimands and sensitivity analysis in clinical trials to the guideline on statistical principles for clinical trials, step 5. London: European Medicines Evaluation Agency.
Li, H., Chen, W.-C., Lu, N., Tang, R., & Zhao, Y. (2024). The elusiveness of the win ratio parameter in the presence of missing data. Therapeutic Innovation & Regulatory Science, 1–2.
Luo, X., Tian, H., Mohanty, S., & Tsai, W. Y. (2015). An Alternative Approach to Confidence Interval Estimation for the Win Ratio Statistic.
Biometrics,
71(1), 139–145.
https://doi.org/10.1111/biom.12225
Mao, L. (2018). On the Alternative Hypotheses for the Win Ratio.
Biometrics,
75(1), 347–351.
https://doi.org/10.1111/biom.12954
Mao, L. (2021).
Rmt: Restricted mean time in favor of treatment.
https://CRAN.R-project.org/package=rmt
Mao, L. (2023). On restricted mean time in favor of treatment.
Biometrics,
79(1), 61–72.
https://doi.org/10.1111/biom.13570
Mao, L., Kim, K., & Miao, X. (2022). Sample size formula for general win ratio analysis.
Biometrics,
78(3), 1257–1268.
https://doi.org/10.1111/biom.13501
Mao, L., & Wang, T. (2021a). A class of proportional win
-fractions regression models for composite outcomes.
Biometrics,
77(4), 1265–1275.
https://doi.org/10.1111/biom.13382
Mao, L., & Wang, T. (2021b).
WR: Win ratio analysis of composite time-to-event outcomes.
https://CRAN.R-project.org/package=WR
Oakes, D. (2016). On the win-ratio statistic in clinical trials with multiple types of event.
Biometrika,
103(3), 742–745.
https://doi.org/10.1093/biomet/asw026
Pocock, S. J., Ariti, C. A., Collier, T. J., & Wang, D. (2012). The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on clinical priorities.
European Heart Journal,
33(2), 176–182.
https://doi.org/10.1093/eurheartj/ehr352
Wang, B., Zhou, D., Zhang, J., Kim, Y., Chen, L.-W., Dunnmon, P., Bai, S., Liu, Q., & Ishida, E. (2023). Statistical power considerations in the use of win ratio in cardiovascular outcome trials.
Contemporary Clinical Trials,
124, 107040.
https://doi.org/10.1016/j.cct.2022.107040
Wang, T., Li, Y., & Qu, Y. (2024). Restricted time win ratio: from estimands to estimation.
Statistics in Biopharmaceutical Research, 1–18.
https://doi.org/10.1080/19466315.2024.2332675
Wang, T., & Mao, L. (2022). Stratified proportional win
-fractions regression analysis.
Statistics in Medicine,
41(26), 5305–5318.
https://doi.org/10.1002/sim.9570
Wang, T., Zilinskas, R., Li, Y., & Qu, Y. (2023). Missing Data Imputation for a Multivariate Outcome of Mixed Variable Types.
Statistics in Biopharmaceutical Research,
15(4), 826–837.
https://doi.org/10.1080/19466315.2023.2169753
Yu, R. X., & Ganju, J. (2022). Sample size formula for a win ratio endpoint.
Statistics in Medicine,
41(6), 950–963.
https://doi.org/10.1002/sim.9297