Two-sample win ratio (net benefit) analysis
WRtest.Rd
Estimate and make inference on win ratio (net benefit) comparing a treatment to a control group.
Arguments
- Y1
\(K\)-variate response data on \(n_1\) subjects in treatment (\(n_1\times K\) matrix).
- Y0
\(K\)-variate response data on \(n_0\) subjects in control (\(n_0\times K\) matrix).
- fun
User-specified win function for pairwise comparison. It takes two arguments \(y_1\) and \(y_0\) (both \(K\)-vectors) and returns 1 if \(y_1\) wins, -1 if \(y_0\) wins, and 0 if tied. The default is
wprod
for the product order of multivariate ordinal data.
Value
An object of class wrtest
with the following components:
- theta
A bivariate vector of win/loss fractions.
- lgwr, lgwr_se, lgwr_pval
Log-win ratio estimate (
log(theta[1]/theta[2])
), standard error, and p-value.- nb, nb_se, nb_pval
Net benefit estimate (
theta[1]-theta[2]
), standard error, and p-value.
References
Mao, L. (2024). Win ratio for partially ordered data. Statistica Sinica, Under revision.
Buyse, M. (2010). Generalized pairwise comparisons of prioritized outcomes in the two-sample problem. Statistics in Medicine, 29, 3245-3257.
Examples
head(liver)
#> R1NASH R2NASH Sex AF Steatosis SSF2 LSN
#> 1 3 2 M FALSE 30 0.21 2.33
#> 2 1 1 F FALSE 5 0.38 2.86
#> 3 4 2 M FALSE 70 0.58 3.65
#> 4 4 4 F TRUE 30 -0.08 2.73
#> 5 4 3 M TRUE 70 -0.04 2.53
#> 6 3 3 M FALSE 10 0.02 2.88
## compare bivariate ratings by fibrosis stage
## lower score is better
Y1 <- liver[liver$AF, c("R1NASH", "R2NASH")] # advanced
Y0 <- liver[!liver$AF, c("R1NASH", "R2NASH")] # not advanced
obj <- wrtest(Y1, Y0)
obj
#> Call:
#> wrtest(Y1 = Y1, Y0 = Y0)
#>
#> Two-sample (Y1 vs Y0) win ratio/net benefit analysis
#>
#> Number of pairs: N1 x N0 = 69 x 116 = 8004
#> Win: 4251 (53.1%)
#> Loss: 2392 (29.9%)
#> Tie: 1361 (17%)
#>
#> Win ratio (95% CI): 1.78 (1.16, 2.73), p-value = 0.00856547
#> Net benefit (95% CI): 0.232 (0.065, 0.4), p-value = 0.006577537
#>