An estimand for hierarchical composite endpoints
Department of Biostatistics & Medical Informatics
University of Wisconsin-Madison
———————————————————————————————
Statistics and Biostatistics seminar series (Oct 22, 2024)
Main paper - https://doi.org/10.1111/biom.13570
Background
Approach
rmt
Application
Conclusion
\[ \def\a{{(a)}} \def\b{{(1-a)}} \def\t{{(1)}} \def\c{{(0)}} \def\d{{\rm d}} \def\T{{\rm T}} \]
rmt::rmtfit()
(I)status = k
for entry into state \(k\), K+1
for death, 0
for censoringstatus = 1
for nonfatal event, 2
for death, 0
for censoringrmt::rmtfit()
(II)rmtfit
obj$t
: \(t\); obj$mu
: a matrix of \((K+2)\) rows, \(\hat\mu_k(t)\) in \(k\)th row, \(\hat\mu(t)\) in last; obj$var
: variances of point estimates in mu
summary(obj, tau)
for summary results on \(\mu(\tau)\) (tau
: \(\tau\))plot(obj)
to plot \(\hat\mu(t)\) against \(t\)Usual care (N = 221) | Exercise training (N = 205) | ||
---|---|---|---|
Age | ≤ 60 years | 122 (55.2%) | 128 (62.4%) |
> 60 years | 99 (44.8%) | 77 (37.6%) | |
Follow-up | (months) | 28.6 (18.4, 39.3) | 27.6 (19, 40.2) |
Death | 57 (25.8%) | 36 (17.6%) | |
Hospitalizations | 0 | 51 (23.1%) | 60 (29.3%) |
1-3 | 114 (51.6%) | 102 (49.8%) | |
4-10 | 49 (22.2%) | 39 (19%) | |
>10 | 7 (3.2%) | 4 (2%) |
# fit RMT-IF
obj <- rmtfit(hfaction$patid, hfaction$time, hfaction$status, hfaction$trt,
type = "recurrent")
summary(obj, Kmax = 4, tau = 3.97) ## combine recurrent events >= 4
# Restricted mean time in favor of group "1" by time tau = 3.97:
# Estimate Std.Err Z value Pr(>|z|)
# Event 1 0.0140515 0.0498836 0.2817 0.778184
# Event 2 0.0358028 0.0499618 0.7166 0.473619
# Event 3 0.1385287 0.0409533 3.3826 0.000718 ***
# Event 4+ -0.0064731 0.0600813 -0.1077 0.914203
# Survival 0.2384169 0.1143484 2.0850 0.037069 *
# Overall 0.4203268 0.1777363 2.3649 0.018035 *
\(\hat\mu(t)\) as a function of \(t\)
Estimate | SE | P-value | ||
---|---|---|---|---|
Hopitalization | 2.18 | 1.22 | 0.073 | |
1 | 0.17 | 0.60 | 0.778 | |
2 | 0.43 | 0.60 | 0.474 | |
3 | 1.66 | 0.49 | <0.001 | |
4+ | -0.08 | 0.72 | 0.914 | |
Death | 2.86 | 1.37 | 0.037 | |
Overall | 5.04 | 2.13 | 0.018 |
rmt
obj <- rmtfit(id, time, status, trt, type = c("multistate", "recurrent"))
summary(obj, tau)
plot(obj)
Quantitative win-loss times (on patient-time-level)
Loss on nonfatal event can (more than) offset win on survival
Funding
Collaborators