Chapter 7 - Left Truncation and Interval Censoring
Department of Biostatistics & Medical Informatics
University of Wisconsin-Madison
Left truncation mechanisms
Standard and general methods for left truncation
Non- and Semi-parametric methods for Interval censoring
Bangkok Metropolitan Administration HIV Study
\[\newcommand{\d}{{\rm d}}\] \[\newcommand{\T}{{\rm T}}\] \[\newcommand{\dd}{{\rm d}}\] \[\newcommand{\pr}{{\rm pr}}\] \[\newcommand{\var}{{\rm var}}\] \[\newcommand{\se}{{\rm se}}\] \[\newcommand{\indep}{\perp \!\!\! \perp}\] \[\newcommand{\Pn}{n^{-1}\sum_{i=1}^n}\]
Target of inference: still \(T\)
Observed data \[ (T_{Li}, X_i, \delta_i) \,\,\, (i=1,\ldots, n) \]
Independent truncation \[T_L\indep T\]
If all subjects enter late, choose late cutoff \(t_0^*\)
Conditional survival function \[\begin{equation} \hat\pr(T > t\mid T\geq t_0^*, Z) = \exp\left[-\left\{\hat\Lambda_0(t)- \hat\Lambda_0(t_0^*)\right\}\exp(\hat\beta^\T Z)\right] \end{equation}\]
Exercise
Show that \[\pr(T > t\mid T\geq t_0^*, Z) = \exp\left[-\left\{\Lambda_0(t)- \Lambda_0(t_0^*)\right\}\exp(\beta^\T Z)\right] \] for any \(t>t_0^*\) under the Cox model.
survival::Surv()
Input
entry
: \(T_{L}\); end
: \(X\); status
: \(\delta\)Output: survfit
or coxph
object
log-rank test: score test under coxph()
gender=1
) and females (gender=2
)Entry.Age
)
obj <- coxph(Surv(Entry.Age, End.Age, status) ~ factor(gender),
data = channing)
summary(obj)
# coef exp(coef) se(coef) z Pr(>|z|)
# factor(gender)2 -0.3163 0.7289 0.1731 -1.827 0.0677 .
# ---
#
# exp(coef) exp(-coef) lower .95 upper .95
# factor(gender)2 0.7289 1.372 0.5191 1.023
#
# Concordance= 0.528 (se = 0.018)
# Likelihood ratio test= 3.17 on 1 df, p=0.07
# Wald test = 3.34 on 1 df, p=0.07
# Score (logrank) test = 3.36 on 1 df, p=0.07
IntCens::ICSurvICM()
delta = 1
: left censoring (\(L_i=0\)) \(\to\) U =
\(R_i\), V = NA
gamma = 1
: interval censoring (\(L_i>0, R_i<\infty\)) \(\to\) U =
\(L_i\), V =
\(R_i\)delta = gamma = 0
: right censoring (\(R_i =\infty\)) \(\to\) U = NA
, V =
\(L_i\)model = c("NP", "PH", "PO")
: nonparametric (one-sample) estimation, PH, PO regression models (with covariate matrix Z
), respectivelyobj$beta
(\(\hat\beta\)), obj$var
(\(\hat\var(\hat\beta)\)), …1
: male; 0
: female)1
: yes; 0
: no)1
: yes; 0
: no)1
: yes; 0
: no)# print out regression results
print.ICSurv(obj.PH)
# NPMLE of proportional hazards for interval-censored data:
#
# ICM algorithm converges in 102 iterations.
#
# Maximum Likelihood Estimates for Regression parameters:
# Estimate StdErr z.value p.value
# age -0.029914 0.011051 -2.7068 0.006793 **
# sex 0.387923 0.268032 1.4473 0.147814
# need 0.249568 0.144987 1.7213 0.085195 .
# jail 0.456849 0.143961 3.1734 0.001506 **
# inject 0.221270 0.146767 1.5076 0.131652
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
survival::Surv(entry, end, status)
IntCens::ICSurvICM()
IntCens
package is in “Files > R-package”)