Applied Survival Analysis

Chapter 14 - Causal Inference in Survival Analysis

Lu Mao

Department of Biostatistics & Medical Informatics

University of Wisconsin-Madison

Outline

  1. The counterfactual framework

  2. Inverse weighting and standardization

  3. Estimating causal survival curves

  4. Marginal structural models with time-varying treatment/confounding

\[\newcommand{\d}{{\rm d}}\] \[\newcommand{\T}{{\rm T}}\] \[\newcommand{\dd}{{\rm d}}\] \[\newcommand{\cc}{{\rm c}}\] \[\newcommand{\pr}{{\rm pr}}\] \[\newcommand{\var}{{\rm var}}\] \[\newcommand{\se}{{\rm se}}\] \[\newcommand{\indep}{\perp \!\!\! \perp}\] \[\newcommand{\Pn}{n^{-1}\sum_{i=1}^n}\] \[ \newcommand\mymathop[1]{\mathop{\operatorname{#1}}} \] \[ \newcommand{\Ut}{{n \choose 2}^{-1}\sum_{i<j}\sum} \]

$$

$$

The Counterfactual Framework

Association vs Causation

  • Statistical inference
    • Association: test of group difference, correlation, regression
    • Causation: informal or irrelevant
  • Causal inference: study causal relationships explicitly
    • Counterfactual framework
    • Causal diagrams
  • Motivating example: German Breast Cancer Study
    • Relapse-free survival (\(T\)) vs hormonal therapy (\(A=1\) yes; \(A=0\): no)
    • First assume \(T\) is fully observed (no censoring)

RCT as Gold Standard

  • Randomized controlled trial (RCT)
    • Patients randomly assigned to hormonal vs non-hormonal treatment

    • Two groups identical (exchangeable) in terms of baseline characteristic

    • Any between-group difference in relapse-free survival attributable to treatment (no confounding)

      • Increase in \(t=5\) years relapse-free survival rate caused by hormonal treatment

      \[ \hat\pr(T>t\mid A=1)-\hat\pr(T>t\mid A=0) \]

      • (Causal) Hazard ratio under Cox model with binary group as covariate

Possible Confounding

  • Hormone non-randomized

    • Women under hormonal treatment more likely to be post-menopausal than non-treatment (76.0% vs 47.5%)
    • Difference in RFS \(\to\) treatment or menopause?
    • Confounder: menopausal status

Traditional Methods

  • Adjustment for confounding
    • Log-rank test stratified by menopausal status (Ch. 3; stratum-specific difference)
    • Cox regression with menopausal status as a covariate (Ch. 4; conditional hazard ratio)
    • Neither provides a population-level causal effect size of hormone treatment like that derived from an RCT
  • Goal
    • Drawing causal inference in an RCT-like setting, even with observational data

Counterfactual Framework

  • Potential outcomes
    • Each subject has two potential outcomes \(T^{(a)}\) \((a=1, 0)\)
      • \(T^{(1)}\): had the subject been assigned to treatment
      • \(T^{(0)}\): had the subject been assigned to control
  • Causal estimand
    • Any contrast in distribution between \(T^{(1)}\) vs \(T^{(0)}\)
    • Example
      • Survival probability: \(\pr(T^{(1)}>t)-\pr(T^{(0)}>t)\)
      • RMST: \(E(T^{(1)}\wedge t) - E(T^{(0)}\wedge t)\)

Exchangeability Assumption

  • Observed outcome
    • \(A = 1, 0\): actually assigned group \[T=AT^{(1)}+(1-A)T^{(0)}\,\,\,\, (\rm consistency)\]
  • Assumptions
    • Complete randomization \(T^{(a)}\indep A,\hspace{5mm}a=1, 0\)
      • Too strong, typically not satisfied
    • Conditional exchangeability \[\begin{equation}\label{eq:causal:cond_exch} T^{(a)}\indep A \mid W,\hspace{5mm} a=1, 0 \end{equation}\]
      • Assignment independent of potential outcome given confounders \(W\)
      • All confounders are captured in \(W\)

Causal Diagrams

  • Directed Acyclic Graph

IPTW & Standardization

Estimand

  • Observed data
    • Assume the \(T_i\) are fully observed \[(T_i, A_i, W_i),\,\,\,\, i=1,\ldots, n\]
  • Two classes of methods
    • Inverse probability treatment weighting (IPTW)
    • Standardization
  • Causal estimand \[\begin{equation*} S_a(t)=\pr(T^{(a)}>t) \end{equation*}\]

Propensity Score

  • Selection bias
    • \((Y\mid A = 1)\) and \((Y\mid A = 0)\) non-representative of general population
    • Naive estimator biased \[ \hat S_a^{\rm naive}(t)=\frac{\sum_{i=1}^nI(A_i=a, T_i>t)}{\sum_{i=1}^nI(A_i = a)} \]
  • Propensity score
    • Probability of entering treatment \(a\) \[\begin{equation} \pi_a(W)=\pr(A=a\mid W) \end{equation}\]
    • General population \(\stackrel{\pi_a(W)}{\rightleftarrows}\) Group \(a\)

IPTW

  • Re-constitute general population
    • Inverse weighting: Group \(a\) \(\stackrel{\pi_a(W)^{-1}}{\rightarrow}\) General population \[\begin{equation}\label{eq:causal:ipw_surv} \hat S_a^{\rm IP}(t)=n^{-1}\sum_{i=1}^n\frac{I(A_i=a, T_i>t)}{\pi_a(W_i)} \end{equation}\]
    • Unbiased \[\begin{align*} E\left\{\frac{I(A=a, T>t)}{\pi_a(W)}\right\}&=E\left\{\frac{I(A=a, T^{(a)}>t)}{\pi_a(W)}\right\}\\ &=E\left[\pi_a(W)^{-1}E\left\{I(A=a, T^{(a)}>t)\mid W\right\}\right]\\ &=E\left\{\pi_a(W)^{-1}\pr(A=a\mid W)\pr(T^{(a)}>t\mid W)\right\}\\ &=E\left\{\pr(T^{(a)}>t\mid W)\right\}\\ &=S_a(t) \end{align*}\]

Estimate Propensity Score

  • \(\pi_a(W)\) unknown unless by design
    • Estimate \(\hat\pi_a(\cdot)\) using \[ (A_i, W_i),\,\,\ i=1,\ldots,n \]
    • Logistic regression
    • Machine learning classification
  • IPTW estimator
    • Plug in \(\hat\pi_a(W_i)\) \[\begin{equation} \hat S_a^{\rm IP}(t)=n^{-1}\sum_{i=1}^n\frac{I(A_i=a, T_i>t)}{\hat\pi_a(W_i)} \end{equation}\]
    • Variance estimation needs to account for randomness in \(\hat\pi_a(\cdot)\)

Standardization

  • Model outcome vs confounder
    • Instead of treatment vs confounder \[ \hat S_a(t\mid W)= \hat\pr(T^{(a)}>t\mid W) \]
    • E.g., Cox model based on \[ \{(T_i, W_i): A_i=a, i=1,\ldots, n\} \]
    • \((T\mid A =a, W) = (T^{(a)}\mid A =a, W) = (T^{(a)}\mid W)\) (conditional exchangeability)
  • Standardized estimator
    • Average across population: \(\hat S_a^{\rm reg}(t)=n^{-1}\sum_{i=1}^n\hat S_a(t\mid W_i)\)

IPTW vs Standardization

  • Modeling target
    • IPTW: treatment vs confounder
    • Standardization: outcome vs confounder
  • Properties
    • Nonparametric setting (categorical confounder): \(\hat S_a^{\rm IP}(t)=\hat S_a^{\rm reg}(t)\)
    • Doubly robust estimator: valid when either model is true, efficient when both are true

Estimating Causal Survival Curves

Dealing with Censored Data

  • In presence of censoring
    • IPTW (+ IPCW)
    • Standardardization (adjust for cenosring)
  • Observed data \[ (X, \delta, A, W) \]
    • \(X=T\wedge C\), \(\delta = I(T\leq C)\), \(C\): censoring time
  • Two levels of coarsening
    • \(T^{(a)}\to T\): treatment assignment
    • \(T\to (X, \delta)\): Censoring

Assumptions about Censoring

  • Two types of assumption
    • Censoring depends on confounder (general) \[\begin{equation}\label{eq:causal:indep_cens1} T\indep C\mid (A, W) \end{equation}\]
    • Censoring not dependent on confounder \[\begin{equation}\label{eq:causal:indep_cens2} T\indep C\mid A \end{equation}\]

IPCW

  • General assumption \((W\to C)\)
    • Adjust for selection bias by censoring
    • Inverse probability treatment weighting (IPTW) + Inverse probability censoring weighting (IPCW)
  • Censoring weight
    • \(G_a(t\mid W)=\pr(C\geq t\mid A=a, W)\)
    • E.g., Cox model fit on \[ (X_i, 1-\delta_i, W_i)\,\,\,\, i=1,\ldots, n \] with \(C_i\) as outcome

Inverse Weighting

  • Selection probability
    • In group \(a\) and not censored by \(t\): \(\pi_a(W)G_a(t\mid W)\)
    • Inverse weight \[ \hat w_{ai}(t)=\frac{I(A_i=a)}{\hat\pi_a(W_i)\hat G_a(t\mid W_i)} \]
  • IPT(C)W-adjusted KM estimator
    • \(N_i(t)=I(X_i\leq t,\delta_i=1)\) \[\begin{equation}\label{eq:causal_ipcw} \hat S_a^{\rm IP}(t)=\prod_{0\leq u\leq t}\left\{1-\frac{\sum_{i=1}^n \hat w_{ai}(u)\dd N_i(u)}{\sum_{i=1}^n \hat w_{ai}(u)I(X_i\geq u)}\right\} \end{equation}\]
    • If \((T\indep C)\mid A\), then \(\hat G_a(t\mid W_i)\equiv 1\)

Causal Cox Model

  • Marginal structural model
    • \(\lambda_a(t)\): hazard function of \(T^{(a)}\) \[\begin{equation}\label{eq:causal:msm_cox} \lambda_a(t)=\exp(a\beta)\lambda_0(t) \end{equation}\]
  • IPT(C)W-adjusted partial likelihood score
    • \(\hat w_i(t)=\{\hat\pi_{A_i}(W_i)\hat G_{A_i}(t\mid W_i)\}^{-1}\) \[\begin{equation}\label{eq:causal:score} n^{-1}\sum_{i=1}^n\int_0^\infty\left\{A_i-\frac{\sum_{j=1}^nA_j\hat w_{j}(t) I(X_j\geq t)\exp(A_j\beta)} {\sum_{j=1}^n \hat w_{j}(t) I(X_j\geq t)\exp(A_j\beta)}\right\}\hat w_{i}(t)\dd N_i(t)=0 \end{equation}\]
    • \(\exp(\beta)\): causal hazard ratio

Standardization Approach

  • Two-steps
    • Outcome (censored) vs confounder \[S_a(t\mid W)=\pr(T^{(a)}>t\mid W)\]
    • Average \(\hat S_a^{\rm reg}(t)=n^{-1}\sum_{i=1}^n\hat S_a(t\mid W_i)\)
    • Standard software

Software: ipw::ipwpoint()

  • Basic syntax for computing propensity scores
    • A: A; confounders: W
    • family = "binomial", link="logit": logistic regression for binary \(A\)
tmp <- ipwpoint(exposure = A, denominator=~ confounders,
                family = "binomial", link="logit")
  • Output

    • tmp$ipw.weights: \(n\)-Vector of inverse weights
    • Plug in survfit() and coxph()
    # IPTW-adjusted KM
    obj <- survfit(Surv(time,status) ~ A, weights = tmp$ipw.weights)

GBC: An Example

  • German Breast Cancer study
    • \(A\): hormone treatment (1) vs no treatment (0)
    • \(T\): relapse-free survival time
    • \(𝑊\): confounders (menopausal status, tumor size, tumor grade, progesterone and estrogen receptor levels)
  • Assumption about censoring
    • For simplicity \[(T\indep C)\mid A\] Only IPTW needed (no IPCW)

GBC: Coding & Results

  • IPTW-adjusted vs unweighted KM
    • Causal hazard ratio: 69.5% (\(p\)-value 0.006)

    • Standard error may be incorrect due to randomness in estimated weights

      • Bootstrap
# estimate propensity score
tmp <- ipwpoint(exposure = A, family="binomial",link="logit",
             denominator =~ meno + size + factor(grade) + nodes + prog 
                      + estrg, data=data.CE)
# IPTW-adjusted KM
obj <- survfit(Surv(time, status) ~ A, weights = tmp$ipw.weights, 
                       data = data.CE)
# IPTW Cox model (essentially a marginal structural Cox model)
coxph(Surv(time,status) ~ A, weights=tmp$ipw.weights, data=data.CE)
#>       coef exp(coef) se(coef) robust se     z       p
#> A -0.36947   0.69110  0.08318   0.13632 -2.71 0.00672

GBC: IPTW vs Naive

  • Confounding not obvious

Marginal Structural Models (MSM)

Point Treatment

  • Causal inference
    • Relationship between \(T^{(a)}\) vs \(a\), rather than \(T\) vs \(A\)
  • Marginal structural models
    • Definition: a model for \(T^{(a)}\) against \(a\), possibly adjusting for baseline covariates \(v\subset W\)
    • Marginal: no need to condition on full \(W\) as covariates
    • Structural: treatment is \(a\) (as in RCT), not observed \(A\)
    • Simplest case: \(V=\emptyset\) \[\begin{equation} \lambda_a(t)=\exp(a\beta)\lambda_0(t) \end{equation}\]
    • Concept most useful in time-varying treatment/confounding

Marginal Structural Cox Model

  • General form
    • \(\lambda_a(t\mid V)\): conditional hazard of \(T^{(a)}\) given \(V\) \[\begin{equation}\label{eq:causal:msm_cox1} \lambda_a(t\mid V)=\exp(\beta a+\gamma^{\rm T}V)\lambda_0(t) \end{equation}\]
    • \(\exp(\beta)\): causal hazard ratio for treatment vs control adjusting for \(V\)
      • Different from the causal HR adjusting for all of \(W\)
    • Treatment \(\times\) covariate interaction \[\begin{equation}\label{eq:causal:msm_cox2} \lambda_a(t\mid V)=\exp(\beta a+\gamma^{\rm T}V+a\eta^{\rm T}V)\lambda_0(t) \end{equation}\]

Fitting MSM

  • General assumption: \(T\indep C\mid (A, W)\)

  • Weight construction

    • Standard IPTW-IPCW weights \[w_i(t)=\frac{1}{\pi_{A_i}(W_i)G_{A_i}(t\mid W_i)}\]
    • Stablized IPTW-IPCW weights \[\begin{equation}\label{eq:causal:swights} w^{\rm s}_i(t)=\frac{\pi_{A_i}(V_i)G_{A_i}(t\mid V_i)}{\pi_{A_i}(W_i)G_{A_i}(t\mid W_i)}, \end{equation}\]
      • \(\pi_{a}(V)=\pr(A=a\mid V)\) and \(G_{a}(t\mid V)=\pr(C>t\mid A=a, V)\)
      • Set \(G_{a}(t\mid V)=G_{a}(t\mid W)\equiv 1\) if \(W\not\to C\)

Weighted Partial-Likelihood Score

  • Using stablized weights
    • \(\hat w^{\rm s}_i(t)\): an estimate of \(w^{\rm s}_i(t)\) \[\begin{equation}\label{eq:causal:msm_ee} n^{-1}\sum_{i=1}^n\int_0^\infty\left\{Z_i-\frac{\sum_{j=1}^nZ_j\hat w^{\rm s}_j(t) I(X_j\geq t)\exp(\zeta^{\rm T}Z_j)} {\sum_{j=1}^n \hat w^{\rm s}_j(t) I(X_j\geq t)\exp(\zeta^{\rm T}Z_j)}\right\} \hat w^{\rm s}_i(t)\dd N_i(t)=0 \end{equation}\]

    • \(Z_i=(A_i, V_i^{\rm T})^{\rm T}\) and \(\zeta=(\beta,\gamma^{\rm T})^{\rm T}\)

Time-Varying Treatment

  • MSM
    • Adjust for confounders \(\not\leftrightarrow\) adjust for covariates
    • Conditioning on covariate changes meaning of covariate effects
  • Most useful in time-varying treatment/confounding
    • Mediator of previous treatment \(\leftrightarrow\) Confounder for current/future treatment
    • Previous anti-retroviral treatment \(\to\) current CD4 count \(\stackrel{\rm prescribe}{\rightarrow}\)
      • Conditioning on CD4 \(\to\) corrects confounding for current trt, blocks causal path of previous trt

Notation & DAG

  • Notation
    • \(a(t)\): hypothetical treatment at \(t\); \(A(t)\): observed treatment at \(t\)
    • \(W(t)\): possible confounders at \(t\)
    • Discretization
      • \(0=t_0<t_1<\cdots<t_m\): time points
      • \(A_{\cdot j}=A(t_j)\) and \(W_{\cdot j}=W(t_j)\)
      • \(\overline A_{\cdot j}=\{A_{\cdot 0},\ldots, A_{\cdot j}\}\); \(\overline W_{\cdot j}=\{W_{\cdot 0},\ldots, W_{\cdot j}\}\); \(V\subset W_{\cdot 0}\): baseline covariates

MSM for Time-Varying Treatment

  • Modeling target
    • Treatment path (sequence): \(\overline a(t)=\{a(u): 0\leq u\leq t\}\)
    • Outcome: \(T^{(\overline a)}\) = potential outcome under treatment path \(\overline a(\infty)\) against \(a(\cdot)\)
  • Model specification
    • \(\lambda_{\overline a}(t\mid V)\): conditional hazard of \(T^{(\overline a)}\) given \(V\) \[\begin{equation}\label{eq:causal:msm_tv} \lambda_{\overline a}(t\mid V)=\exp\{\beta a(t)+\gamma^{\rm T}V\} \end{equation}\]
    • Cox model with external (why?) time-varying covariate \(a(t)\)
      • Replace \(a(t)\) by any summary of \(\overline a(t)\), e.g., total time on treatment

Sequential Randomization Assumption

  • Sequential conditional exchangeability
    • An time-varying version of CE \[\begin{equation}\label{eq:causal:cond_exch1} T^{(\overline a)}\indep A_{\cdot j}\mid (\overline A_{\cdot, j-1}, \overline W_{\cdot j}) \hspace{2mm}j=1,\ldots, m. \end{equation}\]
    • Treatment assignment random given previous treatments and current/previous confounders (biomarkers)

Longitudinal Weights

  • At time \(t_j\)
    • Propensity scores/non-censoring hazards \[\begin{align} \pi_k(t_j; \overline A_{\cdot, j-1}, V)&=\pr(A_{\cdot j}=k\mid \overline A_{\cdot, j-1}, V)\\ \pi_k(t_j; \overline A_{\cdot, j-1}, \overline W_{\cdot j})&=\pr(A_{\cdot j}=k\mid \overline A_{\cdot, j-1}, \overline W_{\cdot j})\\ \lambda_C(t_j\mid \overline A_{\cdot, j-1}, V)&=\pr(C>t_j \mid C>t_{j-1}, \overline A_{\cdot, j-1}, V)\\ \lambda_C(t_j\mid \overline A_{\cdot, j-1}, \overline W_{\cdot j})&=\pr(C>t_j \mid C>t_{j-1}, \overline A_{\cdot, j-1}, \overline W_{\cdot j}) \end{align}\]
  • Stablized weight at \(t\)
    • IPTW + IPCW \[\begin{equation}\label{eq:causal:swights_tv} w^{\rm s}(t)=\prod_{t_j\leq t}\frac{\pi_{A_{\cdot, j}}(t_j; \overline A_{\cdot, j-1}, V)\lambda_C(t_j\mid \overline A_{\cdot, j-1}, V)} {\pi_{A_{\cdot, j}}(t_j; \overline A_{\cdot, j-1}, \overline W_{\cdot j})\lambda_C(t_j\mid \overline A_{\cdot, j-1}, \overline W_{\cdot j})} \end{equation}\]

Weighted Partial-Likelihood Score

  • Using stablized weights
    • \(\hat w^{\rm s}_i(t)\): estimated \(w^{\rm s}(t)\) for \(i\)th subject \[\begin{align*} n^{-1}\sum_{i=1}^n\int_0^\infty\left\{Z_i(t)-\frac{\sum_{j=1}^n\hat w^{\rm s}_j(t) Z_j(t) I(X_j\geq t)\exp\{\zeta^{\rm T}Z_j(t)\}} {\sum_{j=1}^n \hat w^{\rm s}_j(t) I(X_j\geq t)\exp\{\zeta^{\rm T}Z_j(t)\}}\right\} \hat w^{\rm s}_i(t)\dd N_i(t) \end{align*}\]
      • \(Z_i(t)=\{A_i(t), V_i^{\rm T})\}^{\rm T}\); \(\zeta=(\beta,\gamma^{\rm T})^{\rm T}\)

Software: ipw::ipwtm() (I)

  • Input data (long format)
head(haartdat)
 # patient tstart fuptime haartind event sex age      cd4 endtime dropout
 #       1   -100       0        0     0   1  22 23.83275    2900       0
 #       1      0     100        0     0   1  22 25.59297    2900       0
 #       1    100     200        0     0   1  22 23.47339    2900       0
 #       1    200     300        0     0   1  22 24.16609    2900       0
 #       1    300     400        0     0   1  22 23.23790    2900       0
 #       1    400     500        0     0   1  22 24.85961    2900       0
 # ...

Software: ipw::ipwtm() (II)

  • Basic syntax for IPTW weights
    • trt: treatment indicator; V: baseline covariates \(V\); W: (time-varying) confounders; (tstart, timevar): start/stop times; id: subject identifier
# treatment changes only once, from 0 to 1, 
# e.g., initiation of ART 
iptw <- ipwtm(exposure = trt, family = "survival",
        numerator =~ V, denominator =~ W, id, 
        tstart, timevar, type = "first")

# treatment binary and changes arbitrarily
iptw <- ipwtm(exposure = trt, family = "binomial",
        link="logit", numerator =~ V, denominator =~ W,
        id, type = "all")

Software: ipw::ipwtm() (III)

  • IPTW output:
    • iptw$ipw.weights: \[ \prod_{t_j\leq t}\frac{\pi_{A_{\cdot, j}}(t_j; \overline A_{\cdot, j-1}, V)} {\pi_{A_{\cdot, j}}(t_j; \overline A_{\cdot, j-1}, \overline W_{\cdot j})} \]
  • Basic syntax for IPCW weights
    • censor = 1: censored, 0: not censored
ipcw <- ipwtm(exposure = censor, family = "survival",
        numerator = ~V, denominator = ~W, id, 
        tstart, timevar, type = "first")

Software: ipw::ipwtm() (III)

  • IPCW output:
    • ipcw$ipw.weights: \[ \prod_{t_j\leq t}\frac{\lambda_C(t_j\mid \overline A_{\cdot, j-1}, V)} {\lambda_C(t_j\mid \overline A_{\cdot, j-1}, \overline W_{\cdot j})} \]
  • Fit MSM using combined weights
    • iptw$ipw.weights * ipcw$ipw.weights: \(\hat w^{\rm s}_i(t)\)
obj <- coxph(Surv(tstart, timevar, status) ~ trt + V 
             + cluster(id), 
             weights = iptw$ipw.weights * ipcw$ipw.weights)

An HIV Study

  • Study infomation
    • Population: 1200 HIV-infected patients (van der Wal and Geskus, 2011) followed until death or censoring
    • Treatment: Some initiate highly active anti-retroviral therapy (HAART) during follow-up, as determined by patient CD4 cell count
      • \(A=\) haartind; \(V=\) sex, age; \(W=\) sex, age, cd4
head(haartdat)
 # patient tstart fuptime haartind event sex age      cd4 endtime dropout
 #       1   -100       0        0     0   1  22 23.83275    2900       0
 #       1      0     100        0     0   1  22 25.59297    2900       0
 #       1    100     200        0     0   1  22 23.47339    2900       0
 # ...

Fit MSM for HAART

  • Compute weights and fit model
# Compute the IPTW weights
iptw <- ipwtm(exposure = haartind, family = "survival",
          numerator = ~ sex + age, denominator = ~ cd4 + sex +
          age, id = patient, tstart = tstart, timevar = fuptime, 
          type = "first", data = haartdat)

# Compute the IPCW weights
ipcw <- ipwtm(exposure = dropout, family = "survival",
          numerator = ~ sex + age, denominator = ~ cd4 + sex +
          age, id = patient, tstart = tstart, timevar = fuptime, 
          type = "first", data = haartdat)

# Fit IPTW/IPCW marginal structural Cox model
obj <- coxph(Surv(tstart, fuptime, event) ~ haartind + sex +
             age + cluster(patient), data = haartdat, 
             weights = iptw$ipw.weights * ipcw$ipw.weights)

Inference

  • Results
    • HAART initiation reduces the mortality risk by \(1 – 0.382 = 61.8\%\)
    • Cox model without adjusting for CD4 confounding \(\to\) only \(46.1\%\) reduction
      • Patients who initiate HAART tend to have poor prognosis
summary(obj)
#>              coef exp(coef) se(coef) robust se      z Pr(>|z|)    
#> haartind -0.96171   0.38224  0.43017   0.45148 -2.130 0.033160 *  
#> sex       0.09761   1.10253  0.43770   0.45351  0.215 0.829592    
#> age       0.06400   1.06609  0.01414   0.01678  3.815 0.000136 ***

Exercise

What happens if you adjust for CD4 cell count as a time-varying covariate?

Conclusion

Notes (I)

  • Counterfactual framework
    • Causal inference for statistics, social, and biomedical sciences (Imbens and Rubin, 2015)
  • Point/time-varying treatment/confounding
  • Directed acyclic graph (DAG) approach
    • Causality: models, reasoning, and inference (Pearl, 2011)

Notes (II)

  • Texts

Summary (I)

  • Counterfactual framework
    • Potential outcomes \(T^{(a)}\) \((a=1, 0)\)- mimicking RCT
  • Conditional exchangeability
    • All confounders captured in \(W\)
  • Methods
    • Inverse probability treatment weighting (IPTW; ipw R-package)
    • Standardization

Summary (II)

  • Marginal structural model (MSM) \[\begin{equation} \lambda_{\overline a}(t\mid V)=\exp\{\beta a(t)+\gamma^{\rm T}V\} \end{equation}\]
    • IPTW/IPCW computed by ipw::ipwtm() and fed into survival::coxph()

HW6 (Due May 1)

  • Problem 12.5
  • Problem 13.13
  • Problem 14.10
  • (Extra credit) Problem 14.9